IEEE Trans Neural Netw Learn Syst. 2023 Jun;34(6):2882-2895. doi: 10.1109/TNNLS.2021.3110014. Epub 2023 Jun 1.
This article addresses the safety-critical containment maneuvering of multiple underactuated autonomous surface vehicles (ASVs) in the presence of multiple stationary/moving obstacles. In a complex marine environment, every ASV suffers from model uncertainties, external disturbances, and input constraints. A safety-critical control method is proposed for achieving a collision-free containment formation. Specifically, a fixed-time extended state observer is employed for estimating the model uncertainties and external disturbances. By estimating lumped disturbances in fixed time, nominal containment maneuvering control laws are designed in an Earth-fixed reference frame. Input-to-state safe control barrier functions (ISSf-CBFs) are constructed for mapping safety constraints on states to constraints on control inputs. A distributed quadratic optimization problem with the norm of control inputs as the objective function and ISSf-CBFs as constraints is formulated. A recurrent neural network-based neurodynamic optimization approach is adopted to solve the quadratic optimization problem for computing the forces and moments within the safety and input constraints in real time. It is proven that the error signals in the closed-loop control system are uniformly ultimately bounded and the multi-ASVs system is guaranteed for input-to-state safety. Simulation results are elaborated to substantiate the effectiveness of the proposed safety-critical control method for ASVs based on neurodynamic optimization with control barrier functions.
本文针对存在多个静止/移动障碍物时的多欠驱动自主水面船舶(ASV)的安全关键约束操纵问题展开研究。在复杂的海洋环境中,每个 ASV 都受到模型不确定性、外部干扰和输入约束的影响。本文提出了一种安全关键控制方法,以实现无碰撞的约束编队。具体而言,采用固定时间扩展状态观测器来估计模型不确定性和外部干扰。通过在固定时间内估计集中干扰,在地球固定参考框架中设计名义约束操纵控制律。构建输入到状态安全控制障碍函数(ISSf-CBFs),将状态的安全约束映射到控制输入的约束上。针对输入到状态安全问题,提出了一个以控制输入范数为目标函数、ISSf-CBFs 为约束条件的分布式二次优化问题。采用基于递归神经网络的神经动态优化方法来求解二次优化问题,以实现在安全和输入约束范围内实时计算力和力矩。证明了闭环控制系统中的误差信号是一致有界的,并且多 ASV 系统是输入到状态安全的。通过仿真结果,验证了基于控制障碍函数的神经动态优化的安全关键控制方法对 ASV 的有效性。