Suppr超能文献

数学模型预测接受铂类双药化疗的晚期不可切除非小细胞肺癌患者的化疗反应。

Mathematical model predicts response to chemotherapy in advanced non-resectable non-small cell lung cancer patients treated with platinum-based doublet.

机构信息

Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka Gliwice, Poland.

The 2nd Radiotherapy and Chemotherapy Clinic, M. Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland.

出版信息

PLoS Comput Biol. 2020 Oct 5;16(10):e1008234. doi: 10.1371/journal.pcbi.1008234. eCollection 2020 Oct.

Abstract

We developed a computational platform including machine learning and a mechanistic mathematical model to find the optimal protocol for administration of platinum-doublet chemotherapy in a palliative setting. The platform has been applied to advanced metastatic non-small cell lung cancer (NSCLC). The 42 NSCLC patients treated with palliative intent at Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, were collected from a retrospective cohort of patients diagnosed in 2004-2014. Patients were followed-up, for three years. Clinical data collected include complete information about the clinical course of the patients including treatment schedule, response according to RECIST classification, and survival. The core of the platform is the mathematical model, in the form of a system of ordinary differential equations, describing dynamics of platinum-sensitive and platinum-resistant cancer cells and interactions reflecting competition for space and resources. The model is simulated stochastically by sampling the parameter values from a joint probability distribution function. The machine learning model is applied to calibrate the mathematical model and to fit it to the overall survival curve. The model simulations faithfully reproduce the clinical cohort at three levels long-term response (OS), the initial response (according to RECIST criteria), and the relationship between the number of chemotherapy cycles and time between two consecutive chemotherapy cycles. In addition, we investigated the relationship between initial and long-term response. We showed that those two variables do not correlate which means that we cannot predict patient survival solely based on the initial response. We also tested several chemotherapy schedules to find the best one for patients treated with palliative intent. We found that the optimal treatment schedule depends, among others, on the strength of competition among various subclones in a tumor. The computational platform developed allows optimizing chemotherapy protocols, within admissible limits of toxicity, for palliative treatment of metastatic NSCLC. The simplicity of the method allows its application to chemotherapy optimization in different cancers.

摘要

我们开发了一个包含机器学习和机制数学模型的计算平台,以找到在姑息治疗环境中给予铂类双联化疗的最佳方案。该平台已应用于晚期转移性非小细胞肺癌(NSCLC)。从 2004 年至 2014 年期间在 Maria Sklodowska-Curie 国家肿瘤研究所 Gliwice 分部以姑息治疗为目的治疗的 42 名 NSCLC 患者被纳入回顾性队列研究。对患者进行了为期三年的随访。收集的临床数据包括患者临床病程的完整信息,包括治疗方案、根据 RECIST 分类的反应以及生存情况。该平台的核心是数学模型,以描述铂类敏感和铂类耐药癌细胞动力学以及反映竞争空间和资源的相互作用的常微分方程组的形式呈现。通过从联合概率分布函数中抽样参数值对模型进行随机模拟。机器学习模型用于校准数学模型并拟合总体生存曲线。模型模拟在三个层面忠实地再现了临床队列:长期反应(OS)、初始反应(根据 RECIST 标准)以及化疗周期数量与连续两次化疗周期之间时间的关系。此外,我们还研究了初始反应和长期反应之间的关系。我们发现这两个变量之间没有相关性,这意味着我们不能仅根据初始反应来预测患者的生存。我们还测试了几种化疗方案,以找到最适合姑息治疗的方案。我们发现最佳治疗方案取决于肿瘤中各种亚克隆之间竞争的强度等因素。开发的计算平台允许在可接受的毒性范围内,优化姑息治疗转移性 NSCLC 的化疗方案。该方法的简单性允许将其应用于不同癌症的化疗优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b41/7561182/8c351ecd9ece/pcbi.1008234.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验