Suppr超能文献

使用基于生物学的数字孪生技术为三阴性乳腺癌个性化新辅助化疗方案。

Personalizing neoadjuvant chemotherapy regimens for triple-negative breast cancer using a biology-based digital twin.

作者信息

Christenson Chase, Wu Chengyue, Hormuth David A, Ma Jingfei, Yam Clinton, Rauch Gaiane M, Yankeelov Thomas E

机构信息

Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.

出版信息

NPJ Syst Biol Appl. 2025 May 23;11(1):53. doi: 10.1038/s41540-025-00531-z.

Abstract

Despite advances triple negative breast cancer treatment, ~50% of patients will not achieve a pathological complete response prior to surgery with standard of care neoadjuvant therapy (NAT). We hypothesize that personalized regimens for NAT could significantly improve patient outcomes, which we address with a patient-specific digital twin framework. This framework is established by calibrating a biology-based model to longitudinal magnetic resonance images with approximate Bayesian computation. We then apply optimal control theory to either (1) reduce the final tumor cell number with equivalent dose, or (2) reduce the total dose of NAT with equivalent response. For (1), the personalized regimens (n = 50) achieved a median (range) reduction in the final tumor cell number of 17.62% (0.00-37.36%). For (2), the personalized regimens achieved a median reduction in dose delivered of 12.62% (0.00-56.55%) when compared to the standard-of-care regimen, while providing statistically equivalent tumor control.

摘要

尽管三阴性乳腺癌治疗取得了进展,但在采用标准护理新辅助治疗(NAT)进行手术前,仍有~50%的患者无法实现病理完全缓解。我们假设,个性化的NAT方案可以显著改善患者的治疗效果,我们通过特定患者的数字孪生框架来解决这一问题。该框架是通过使用近似贝叶斯计算方法,将基于生物学的模型校准到纵向磁共振图像而建立的。然后,我们应用最优控制理论来:(1)在等效剂量下减少最终肿瘤细胞数量,或(2)在等效反应下减少NAT的总剂量。对于(1),个性化方案(n = 50)使最终肿瘤细胞数量的中位数(范围)减少了17.62%(0.00 - 37.36%)。对于(2),与标准护理方案相比,个性化方案使给药剂量的中位数减少了12.62%(0.00 - 56.55%),同时提供了统计学上等效的肿瘤控制效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce1/12102339/5f07ad335a1a/41540_2025_531_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验