Suppr超能文献

造血细胞移植研究中时间相关变量的统计方法

Statistical Methods for Time-Dependent Variables in Hematopoietic Cell Transplantation Studies.

作者信息

Kim Soyoung, Logan Brent, Riches Marcie, Chen Min, Ahn Kwang Woo

机构信息

Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin.

Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin; Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin.

出版信息

Transplant Cell Ther. 2021 Feb;27(2):125-132. doi: 10.1016/j.bbmt.2020.09.034. Epub 2020 Oct 2.

Abstract

The interaction of clinically important yet time-dependent events such as infection and acute graft-versus-host disease (GVHD) on hematopoietic cell transplant outcomes is of particular interest to transplant physicians. Clinically, the development of these events is unknown at the time of transplant, but both events place the patient at risk of morbidity and mortality. Furthermore, the occurrence of one may affect the risk for the development of the other (ie, GVHD results in increased immunosuppression, resulting in infection). While these risks can be determined using traditional Cox modeling, due to their time-varying effects on the outcome, it is challenging to graphically display the patient's expected clinical status over time. Landmark analysis is one of the commonly used methods to present time-dependent variables graphically. It can be a useful tool for describing an outcome of interest with time-dependent variables. In this article, we review the basic concepts of time-dependent variables and describe a landmark study with a single-landmark time point and a dynamic landmark study with multiple landmark time points. We illustrate these methods with a hematopoietic cell transplantation data set with infections.

摘要

临床上重要但具有时间依赖性的事件,如感染和急性移植物抗宿主病(GVHD),对造血细胞移植结果的相互作用是移植医生特别感兴趣的。临床上,这些事件在移植时的发展情况尚不清楚,但这两个事件都会使患者面临发病和死亡风险。此外,一个事件的发生可能会影响另一个事件发生的风险(即GVHD导致免疫抑制增加,从而引发感染)。虽然可以使用传统的Cox模型来确定这些风险,但由于它们对结果具有随时间变化的影响,因此以图形方式展示患者随时间的预期临床状态具有挑战性。地标分析是常用的以图形方式呈现时间依赖性变量的方法之一。它可以是用时间依赖性变量描述感兴趣结果的有用工具。在本文中,我们回顾了时间依赖性变量的基本概念,并描述了具有单个地标时间点的地标研究和具有多个地标时间点的动态地标研究。我们用一个包含感染的造血细胞移植数据集来说明这些方法。

相似文献

引用本文的文献

3
Post-transplantation cyclophosphamide is associated with increased bacterial infections.移植后环磷酰胺与细菌感染增加有关。
Bone Marrow Transplant. 2024 Jan;59(1):76-84. doi: 10.1038/s41409-023-02131-z. Epub 2023 Oct 31.

本文引用的文献

6
Dynamic prediction by landmarking in competing risks.基于标志点的竞争风险动态预测。
Stat Med. 2013 May 30;32(12):2031-47. doi: 10.1002/sim.5665. Epub 2012 Oct 22.
7
Review of multistate models in hematopoietic cell transplantation studies.造血细胞移植研究中多状态模型的综述。
Biol Blood Marrow Transplant. 2013 Jan;19(1 Suppl):S84-7. doi: 10.1016/j.bbmt.2012.10.016. Epub 2012 Oct 17.
8
Competing risks regression for clustered data. 群组数据的竞争风险回归。
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
9
Landmark analysis at the 25-year landmark point.在25年时间节点进行的标志性分析。
Circ Cardiovasc Qual Outcomes. 2011 May;4(3):363-71. doi: 10.1161/CIRCOUTCOMES.110.957951.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验