Division of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, USA.
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
A population average regression model is proposed to assess the marginal effects of covariates on the cumulative incidence function when there is dependence across individuals within a cluster in the competing risks setting. This method extends the Fine-Gray proportional hazards model for the subdistribution to situations, where individuals within a cluster may be correlated due to unobserved shared factors. Estimators of the regression parameters in the marginal model are developed under an independence working assumption where the correlation across individuals within a cluster is completely unspecified. The estimators are consistent and asymptotically normal, and variance estimation may be achieved without specifying the form of the dependence across individuals. A simulation study evidences that the inferential procedures perform well with realistic sample sizes. The practical utility of the methods is illustrated with data from the European Bone Marrow Transplant Registry.
提出了一种群体平均回归模型,用于评估竞争风险环境下,当个体间存在相关性时,协变量对累积发生率函数的边缘效应。该方法将 Fine-Gray 亚分布比例风险模型扩展到以下情况:由于未观察到的共享因素,群内个体可能存在相关性。在个体间相关性完全未指定的独立性工作假设下,开发了边缘模型中回归参数的估计量。估计量是一致的和渐近正态的,并且可以在不指定个体间相关性形式的情况下实现方差估计。模拟研究表明,这些推论程序在实际样本量下表现良好。该方法的实际应用通过欧洲骨髓移植登记处的数据进行了说明。