Suppr超能文献

群组数据的竞争风险回归。

Competing risks regression for clustered data.

机构信息

Division of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, USA.

出版信息

Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.

Abstract

A population average regression model is proposed to assess the marginal effects of covariates on the cumulative incidence function when there is dependence across individuals within a cluster in the competing risks setting. This method extends the Fine-Gray proportional hazards model for the subdistribution to situations, where individuals within a cluster may be correlated due to unobserved shared factors. Estimators of the regression parameters in the marginal model are developed under an independence working assumption where the correlation across individuals within a cluster is completely unspecified. The estimators are consistent and asymptotically normal, and variance estimation may be achieved without specifying the form of the dependence across individuals. A simulation study evidences that the inferential procedures perform well with realistic sample sizes. The practical utility of the methods is illustrated with data from the European Bone Marrow Transplant Registry.

摘要

提出了一种群体平均回归模型,用于评估竞争风险环境下,当个体间存在相关性时,协变量对累积发生率函数的边缘效应。该方法将 Fine-Gray 亚分布比例风险模型扩展到以下情况:由于未观察到的共享因素,群内个体可能存在相关性。在个体间相关性完全未指定的独立性工作假设下,开发了边缘模型中回归参数的估计量。估计量是一致的和渐近正态的,并且可以在不指定个体间相关性形式的情况下实现方差估计。模拟研究表明,这些推论程序在实际样本量下表现良好。该方法的实际应用通过欧洲骨髓移植登记处的数据进行了说明。

相似文献

1
Competing risks regression for clustered data.
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
3
Estimating and testing for center effects in competing risks.
Stat Med. 2011 Jun 15;30(13):1608-17. doi: 10.1002/sim.4132. Epub 2011 Feb 22.
4
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
5
Variable selection in competing risks models based on quantile regression.
Stat Med. 2019 Oct 15;38(23):4670-4685. doi: 10.1002/sim.8326. Epub 2019 Jul 29.
6
Semiparametric marginal regression for clustered competing risks data with missing cause of failure.
Biostatistics. 2023 Jul 14;24(3):795-810. doi: 10.1093/biostatistics/kxac012.
7
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
8
Competing risks regression for stratified data.
Biometrics. 2011 Jun;67(2):661-70. doi: 10.1111/j.1541-0420.2010.01493.x. Epub 2010 Dec 14.
9
A new approach to regression analysis of censored competing-risks data.
Lifetime Data Anal. 2017 Oct;23(4):605-625. doi: 10.1007/s10985-016-9378-8. Epub 2016 Aug 8.

引用本文的文献

3
US Population Size and Outcomes of Adults on Liver Transplant Waiting Lists.
JAMA Netw Open. 2025 Mar 3;8(3):e251759. doi: 10.1001/jamanetworkopen.2025.1759.
5
Cardio and cerebrovascular diseases risk among Alzheimer's disease patients and racial/ethnic disparities, based on Hawaii Medicare data.
J Alzheimers Dis Rep. 2024 Nov 24;8(1):1529-1540. doi: 10.1177/25424823241289038. eCollection 2024.
6
Competing risks regression for clustered data with covariate-dependent censoring.
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.
7
Adjusted curves for clustered survival and competing risks data.
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.
10
One-shot distributed algorithms for addressing heterogeneity in competing risks data across clinical sites.
J Biomed Inform. 2024 Feb;150:104595. doi: 10.1016/j.jbi.2024.104595. Epub 2024 Jan 18.

本文引用的文献

1
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
2
Analyses of cumulative incidence functions via non-parametric multiple imputation.
Stat Med. 2008 Nov 29;27(27):5709-24. doi: 10.1002/sim.3402.
3
Competing risks analysis of correlated failure time data.
Biometrics. 2008 Mar;64(1):172-9. doi: 10.1111/j.1541-0420.2007.00868.x. Epub 2007 Aug 3.
5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验