Abdelnabi Mahmoud Mohamed Saad, Blundo Elena, Betti Maria Grazia, Cavoto Gianluca, Placidi Ernesto, Polimeni Antonio, Ruocco Alessandro, Hu Kailong, Ito Yoshikazu, Mariani Carlo
Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy.
Dipartimento di Fisica and INFN Sezione di Roma 1, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Rome, Italy.
Nanotechnology. 2021 Jan 15;32(3):035707. doi: 10.1088/1361-6528/abbe56.
Graphane is formed by bonding hydrogen (and deuterium) atoms to carbon atoms in the graphene mesh, with modification from the pure planar sp bonding towards an sp configuration. Atomic hydrogen (H) and deuterium (D) bonding with C atoms in fully free-standing nano porous graphene (NPG) is achieved, by exploiting low-energy proton (or deuteron) non-destructive irradiation, with unprecedented minimal introduction of defects, as determined by Raman spectroscopy and by the C 1s core level lineshape analysis. Evidence of the H- (or D-) NPG bond formation is obtained by bringing to light the emergence of a H- (or D-) related sp-distorted component in the C 1s core level, clear fingerprint of H-C (or D-C) covalent bonding. The H (or D) bonding with the C atoms of free-standing graphene reaches more than 1/4 (or 1/3) at% coverage. This non-destructive H-NPG (or D-NPG) chemisorption is very stable at high temperatures up to about 800 K, as monitored by Raman and x-ray photoelectron spectroscopy, with complete healing and restoring of clean graphene above 920 K. The excellent chemical and temperature stability of H- (and D-) NPG opens the way not only towards the formation of semiconducting graphane on large-scale samples, but also to stable graphene functionalisation enabling futuristic applications in advanced detectors for the β-spectrum analysis.
通过将氢(和氘)原子与石墨烯网格中的碳原子键合,石墨烯从纯平面sp键合转变为sp³构型,从而形成石墨烷。利用低能质子(或氘核)无损辐照,在完全独立的纳米多孔石墨烯(NPG)中实现了原子氢(H)和氘(D)与碳原子的键合,拉曼光谱和C 1s芯能级线形分析表明,引入的缺陷前所未有的少。通过揭示C 1s芯能级中出现的与H-(或D-)相关的sp³扭曲成分,即H-C(或D-C)共价键的清晰指纹,获得了H-(或D-)NPG键形成的证据。与独立石墨烯的C原子键合的H(或D)覆盖率达到超过1/4(或1/3)原子百分比。如拉曼光谱和X射线光电子能谱监测所示,这种无损的H-NPG(或D-NPG)化学吸附在高达约800 K的高温下非常稳定,在920 K以上时,干净的石墨烯会完全愈合并恢复。H-(和D-)NPG优异的化学和温度稳定性不仅为在大规模样品上形成半导体石墨烷开辟了道路,也为稳定的石墨烯功能化开辟了道路,从而实现了在用于β谱分析的先进探测器中的未来应用。