Fotiadou E, Xu M, van Erp B, van Sloun R J G, Vullings R
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:608-611. doi: 10.1109/EMBC44109.2020.9175442.
Fetal electrocardiography is a valuable alternative to standard fetal monitoring. Suppression of the maternal electrocardiogram (ECG) in the abdominal measurements, results in fetal ECG signals, from which the fetal heart rate (HR) can be determined. This HR detection typically requires fetal R-peak detection, which is challenging, especially during low signal-to-noise ratio periods, caused for example by uterine activity. In this paper, we propose the combination of a convolutional neural network and a long short-term memory network that directly predicts the fetal HR from multichannel fetal ECG. The network is trained on a dataset, recorded during labor, while the performance of the method is evaluated both on a test dataset and on set-A of the 2013 Physionet /Computing in Cardiology Challenge. The algorithm achieved a positive percent agreement of 92.1% and 98.1% for the two datasets respectively, outperforming a top-performing state-of-the-art signal processing algorithm.
胎儿心电图是标准胎儿监护的一种有价值的替代方法。在腹部测量中抑制母体心电图(ECG),可得到胎儿心电图信号,据此可确定胎儿心率(HR)。这种心率检测通常需要检测胎儿R波峰,这具有挑战性,尤其是在例如由子宫活动导致的低信噪比时期。在本文中,我们提出将卷积神经网络和长短期记忆网络相结合,直接从多通道胎儿心电图预测胎儿心率。该网络在分娩期间记录的数据集上进行训练,同时在测试数据集和2013年生理信号挑战赛/心脏病学计算挑战赛的A组数据集上评估该方法的性能。该算法在两个数据集上分别实现了92.1%和98.1%的阳性一致率,优于一种表现最佳的先进信号处理算法。