Suppr超能文献

卷积自动编码和高斯混合聚类在可穿戴传感器心电图无监督逐拍心率估计中的应用。

Convolutional Autoencoding and Gaussian Mixture Clustering for Unsupervised Beat-to-Beat Heart Rate Estimation of Electrocardiograms from Wearable Sensors.

机构信息

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

Suzhou Institute of Biomedical Engineering and Technology, University of Science and Technology of China, Hefei 230026, China.

出版信息

Sensors (Basel). 2021 Oct 28;21(21):7163. doi: 10.3390/s21217163.

Abstract

Heart rate is one of the most important diagnostic bases for cardiovascular disease. This paper introduces a deep autoencoding strategy into feature extraction of electrocardiogram (ECG) signals, and proposes a beat-to-beat heart rate estimation method based on convolution autoencoding and Gaussian mixture clustering. The high-level heartbeat features were first extracted in an unsupervised manner by training the convolutional autoencoder network, and then the adaptive Gaussian mixture clustering was applied to detect the heartbeat locations from the extracted features, and calculated the beat-to-beat heart rate. Compared with the existing heartbeat classification/detection methods, the proposed unsupervised feature learning and heartbeat clustering method does not rely on accurate labeling of each heartbeat location, which could save a lot of time and effort in human annotations. Experimental results demonstrate that the proposed method maintains better accuracy and generalization ability compared with the existing ECG heart rate estimation methods and could be a robust long-time heart rate monitoring solution for wearable ECG devices.

摘要

心率是心血管疾病最重要的诊断依据之一。本文将深度自动编码策略引入心电图(ECG)信号的特征提取中,提出了一种基于卷积自动编码和高斯混合聚类的逐拍心率估计方法。通过训练卷积自动编码器网络,首先以无监督的方式提取高级心率特征,然后应用自适应高斯混合聚类从提取的特征中检测心率位置,并计算逐拍心率。与现有的心率分类/检测方法相比,所提出的无监督特征学习和心率聚类方法不依赖于每个心率位置的准确标记,这可以节省大量的人工注释时间和精力。实验结果表明,与现有的 ECG 心率估计方法相比,所提出的方法保持了更好的准确性和泛化能力,可为可穿戴 ECG 设备提供稳健的长期心率监测解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/595f/8587957/70a891df920a/sensors-21-07163-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验