Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands.
Department of Obstetrics and Gynaecology, Máxima Medical Center, Veldhoven, 5504 DB, The Netherlands.
Physiol Meas. 2021 May 13;42(4). doi: 10.1088/1361-6579/abf7db.
. Fetal heart rate (HR) monitoring is routinely used during pregnancy and labor to assess fetal well-being. The noninvasive fetal electrocardiogram (ECG), obtained by electrodes on the maternal abdomen, is a promising alternative to standard fetal monitoring. Subtraction of the maternal ECG from the abdominal measurements results in fetal ECG signals, in which the fetal HR can be determined typically through R-peak detection. However, the low signal-to-noise ratio and the nonstationary nature of the fetal ECG make R-peak detection a challenging task.. We propose an alternative approach that instead of performing R-peak detection employs deep learning to directly determine the fetal HR from the extracted fetal ECG signals. We introduce a combination of dilated inception convolutional neural networks (CNN) with long short-term memory networks to capture both short-term and long-term temporal dynamics of the fetal HR. The robustness of the method is reinforced by a separate CNN-based classifier that estimates the reliability of the outcome.. Our method achieved a positive percent agreement (within 10% of the actual fetal HR value) of 97.3% on a dataset recorded during labor and 99.6% on set-A of the 2013 Physionet/Computing in Cardiology Challenge exceeding top-performing state-of-the-art algorithms from the literature.. The proposed method can potentially improve the accuracy and robustness of fetal HR extraction in clinical practice.
. 胎儿心率(HR)监测在妊娠和分娩期间常规用于评估胎儿健康状况。通过在母体腹部放置电极获得的非侵入性胎儿心电图(ECG)是标准胎儿监测的有前途的替代方法。从腹部测量值中减去母体 ECG 可得到胎儿 ECG 信号,通常可以通过 R 波检测来确定胎儿 HR。然而,胎儿 ECG 的信噪比低且具有非平稳性,使得 R 波检测成为一项具有挑战性的任务。. 我们提出了一种替代方法,它不是执行 R 波检测,而是使用深度学习从提取的胎儿 ECG 信号中直接确定胎儿 HR。我们引入了具有长短期记忆网络的扩张 inception 卷积神经网络(CNN)的组合,以捕捉胎儿 HR 的短期和长期时间动态。通过基于 CNN 的单独分类器来估计结果的可靠性,增强了方法的稳健性。. 在记录分娩过程中的数据集上,我们的方法达到了 97.3%的阳性百分一致率(与实际胎儿 HR 值相差 10%以内),在 2013 年 Physionet/计算心脏病学挑战赛的 A 集中达到了 99.6%,超过了文献中表现最佳的最先进算法。. 该方法有可能提高临床实践中胎儿 HR 提取的准确性和稳健性。