Suppr超能文献

音频对音频更好?关于心音分类迁移学习模型的研究。

Audio for Audio is Better? An Investigation on Transfer Learning Models for Heart Sound Classification.

作者信息

Koike Tomoya, Qian Kun, Kong Qiuqiang, Plumbley Mark D, Schuller Bjorn W, Yamamoto Yoshiharu

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:74-77. doi: 10.1109/EMBC44109.2020.9175450.

Abstract

Cardiovascular disease is one of the leading factors for death cause of human beings. In the past decade, heart sound classification has been increasingly studied for its feasibility to develop a non-invasive approach to monitor a subject's health status. Particularly, relevant studies have benefited from the fast development of wearable devices and machine learning techniques. Nevertheless, finding and designing efficient acoustic properties from heart sounds is an expensive and time-consuming task. It is known that transfer learning methods can help extract higher representations automatically from the heart sounds without any human domain knowledge. However, most existing studies are based on models pre-trained on images, which may not fully represent the characteristics inherited from audio. To this end, we propose a novel transfer learning model pre-trained on large scale audio data for a heart sound classification task. In this study, the PhysioNet CinC Challenge Dataset is used for evaluation. Experimental results demonstrate that, our proposed pre-trained audio models can outperform other popular models pre-trained by images by achieving the highest unweighted average recall at 89.7 %.

摘要

心血管疾病是导致人类死亡的主要因素之一。在过去十年中,心音分类因其作为一种监测受试者健康状况的非侵入性方法的可行性而受到越来越多的研究。特别是,相关研究受益于可穿戴设备和机器学习技术的快速发展。然而,从心音中发现和设计有效的声学特征是一项昂贵且耗时的任务。众所周知,迁移学习方法可以帮助在没有任何人类领域知识的情况下自动从心音中提取更高层次的特征表示。然而,大多数现有研究基于在图像上预训练的模型,这可能无法完全代表从音频继承的特征。为此,我们提出了一种在大规模音频数据上预训练的新型迁移学习模型,用于心音分类任务。在本研究中,使用PhysioNet CinC挑战数据集进行评估。实验结果表明,我们提出的预训练音频模型可以通过达到89.7%的最高未加权平均召回率,优于其他通过图像预训练的流行模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验