Suppr超能文献

基于基音同步语音片段和精细高斯核支持向量机的帕金森病分类

Parkinson's Disease Classification using Pitch Synchronous Speech Segments and Fine Gaussian Kernels based SVM.

作者信息

Appakaya Sai Bharadwaj, Sankar Ravi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:236-239. doi: 10.1109/EMBC44109.2020.9176193.

Abstract

Researchers have been using signal processing based methods to assess speech from Parkinson's disease (PD) patients and identify the contrasting features in comparison to speech from healthy controls (HC). The methodologies follow conventional approach of segmenting speech over a fixed window (≈25ms to 30ms) followed by feature extraction and classification. The proposed methodology uses MFCCs extracted from pitch synchronous and fixed window (25ms) based speech segments for classification using fine Gaussian support vector machines (SVM). Three word utterances with three different vowel sounds are used for this analysis. Clustering experiments are aimed at identifying two clusters and class labels (PD/HC) are assigned based on number of participants from the respective class in the cluster. The features are divided into 9 groups based on the vowel content to evaluate the effect of different vowel sounds. Principal component analysis (PCA) is used for dimensionality reduction along with a 10-fold cross-validation. From the results, we observed that pitch synchronous segmentation yields better classification performance compared to fixed window based segmentation. The results of this analysis support our hypothesis that pitch synchronous segmentation is better suited for PD classification using connected speech.Clinical Relevance- The automatic speech analysis framework used in this analysis establishes the greater efficiency of pitch synchronous segmentation over the traditional methods.

摘要

研究人员一直在使用基于信号处理的方法来评估帕金森病(PD)患者的语音,并识别与健康对照(HC)语音相比的对比特征。这些方法遵循传统方法,即在固定窗口(约25毫秒至30毫秒)上分割语音,然后进行特征提取和分类。所提出的方法使用从基于基音同步和固定窗口(25毫秒)的语音段中提取的梅尔频率倒谱系数(MFCC),通过精细高斯支持向量机(SVM)进行分类。本分析使用了包含三种不同元音发音的三个单词发音。聚类实验旨在识别两个聚类,并根据聚类中各自类别的参与者数量分配类别标签(PD/HC)。根据元音内容将特征分为9组,以评估不同元音发音的影响。主成分分析(PCA)用于降维,并进行10折交叉验证。从结果中我们观察到,与基于固定窗口的分割相比,基音同步分割产生了更好的分类性能。该分析结果支持了我们的假设,即基音同步分割更适合使用连贯语音进行PD分类。临床相关性——本分析中使用的自动语音分析框架证实了基音同步分割相对于传统方法具有更高的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验