Suppr超能文献

基于卷积神经网络在噪声环境下从连续语音中识别帕金森病

CNN-Based Identification of Parkinson's Disease from Continuous Speech in Noisy Environments.

作者信息

Faragó Paul, Ștefănigă Sebastian-Aurelian, Cordoș Claudia-Georgiana, Mihăilă Laura-Ioana, Hintea Sorin, Peștean Ana-Sorina, Beyer Michel, Perju-Dumbravă Lăcrămioara, Ileșan Robert Radu

机构信息

Bases of Electronics Department, Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.

Department of Computer Science, Faculty of Mathematics and Computer Science, West University of Timisoara, 300223 Timisoara, Romania.

出版信息

Bioengineering (Basel). 2023 Apr 26;10(5):531. doi: 10.3390/bioengineering10050531.

Abstract

Parkinson's disease is a progressive neurodegenerative disorder caused by dopaminergic neuron degeneration. Parkinsonian speech impairment is one of the earliest presentations of the disease and, along with tremor, is suitable for pre-diagnosis. It is defined by hypokinetic dysarthria and accounts for respiratory, phonatory, articulatory, and prosodic manifestations. The topic of this article targets artificial-intelligence-based identification of Parkinson's disease from continuous speech recorded in a noisy environment. The novelty of this work is twofold. First, the proposed assessment workflow performed speech analysis on samples of continuous speech. Second, we analyzed and quantified Wiener filter applicability for speech denoising in the context of Parkinsonian speech identification. We argue that the Parkinsonian features of loudness, intonation, phonation, prosody, and articulation are contained in the speech, speech energy, and Mel spectrograms. Thus, the proposed workflow follows a feature-based speech assessment to determine the feature variation ranges, followed by speech classification using convolutional neural networks. We report the best classification accuracies of 96% on speech energy, 93% on speech, and 92% on Mel spectrograms. We conclude that the Wiener filter improves both feature-based analysis and convolutional-neural-network-based classification performances.

摘要

帕金森病是一种由多巴胺能神经元变性引起的进行性神经退行性疾病。帕金森氏语音障碍是该疾病最早的表现之一,与震颤一样,适用于疾病的预诊断。它由运动减少型构音障碍定义,并表现为呼吸、发声、发音和韵律方面的症状。本文的主题是基于人工智能从嘈杂环境中记录的连续语音中识别帕金森病。这项工作的新颖之处有两点。第一,所提出的评估工作流程对连续语音样本进行语音分析。第二,我们在帕金森氏语音识别的背景下分析并量化了维纳滤波器在语音去噪方面的适用性。我们认为响度、语调、发声、韵律和发音等帕金森氏特征包含在语音、语音能量和梅尔频谱图中。因此,所提出的工作流程遵循基于特征的语音评估来确定特征变化范围,然后使用卷积神经网络进行语音分类。我们报告了在语音能量上的最佳分类准确率为96%,在语音上为93%,在梅尔频谱图上为92%。我们得出结论,维纳滤波器提高了基于特征的分析和基于卷积神经网络的分类性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9328/10215644/bd4a76baa8f2/bioengineering-10-00531-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验