Kocanaogullari Deniz, Mak Jennifer, Kersey Jessica, Khalaf Aya, Ostadabbas Sarah, Wittenberg George, Skidmore Elizabeth, Akcakaya Murat
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:264-267. doi: 10.1109/EMBC44109.2020.9176378.
Spatial neglect (SN) is a neurological syndrome in stroke patients, commonly due to unilateral brain injury. It results in inattention to stimuli in the contralesional visual field. The current gold standard for SN assessment is the behavioral inattention test (BIT). BIT includes a series of penand-paper tests. These tests can be unreliable due to high variablility in subtest performances; they are limited in their ability to measure the extent of neglect, and they do not assess the patients in a realistic and dynamic environment. In this paper, we present an electroencephalography (EEG)-based brain-computer interface (BCI) that utilizes the Starry Night Test to overcome the limitations of the traditional SN assessment tests. Our overall goal with the implementation of this EEG-based Starry Night neglect detection system is to provide a more detailed assessment of SN. Specifically, to detect the presence of SN and its severity. To achieve this goal, as an initial step, we utilize a convolutional neural network (CNN) based model to analyze EEG data and accordingly propose a neglect detection method to distinguish between stroke patients without neglect and stroke patients with neglect.Clinical relevance-The proposed EEG-based BCI can be used to detect neglect in stroke patients with high accuracy, specificity and sensitivity. Further research will additionally allow for an estimation of a patient's field of view (FOV) for more detailed assessment of neglect.
空间忽视(SN)是中风患者的一种神经综合征,通常由单侧脑损伤引起。它导致对患侧视野中的刺激不注意。目前SN评估的金标准是行为疏忽测试(BIT)。BIT包括一系列纸笔测试。由于子测试表现的高度变异性,这些测试可能不可靠;它们在测量忽视程度方面能力有限,并且它们没有在现实和动态环境中评估患者。在本文中,我们提出了一种基于脑电图(EEG)的脑机接口(BCI),它利用《星夜测试》来克服传统SN评估测试的局限性。我们实施这种基于EEG的星夜忽视检测系统的总体目标是对SN进行更详细的评估。具体来说,是检测SN的存在及其严重程度。为了实现这一目标,作为第一步,我们利用基于卷积神经网络(CNN)的模型来分析EEG数据,并据此提出一种忽视检测方法,以区分无忽视的中风患者和有忽视的中风患者。临床相关性——所提出的基于EEG的BCI可用于高精度、高特异性和高灵敏度地检测中风患者的忽视情况。进一步的研究还将允许估计患者的视野(FOV),以便对忽视进行更详细的评估。