Suppr超能文献

用于帕金森病分类和回归分析的拓扑描述符

Topological Descriptors for Parkinson's Disease Classification and Regression Analysis.

作者信息

Nawar Afra, Rahman Farhan, Krishnamurthi Narayanan, Som Anirudh, Turaga Pavan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:793-797. doi: 10.1109/EMBC44109.2020.9176285.

Abstract

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson's disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson's would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson's disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson's disease dataset comprised of healthy-elderly, healthy-young and Parkinson's disease patients. Our code is available at https://github.com/itsmeafra/Sublevel-Set-TDA.

摘要

目前,绝大多数患有神经系统疾病的患者仍是通过面对面评估以及对患者数据进行定性分析来诊断的。在本文中,我们提议将拓扑数据分析(TDA)与机器学习工具结合起来,以实现帕金森病分类和严重程度评估过程的自动化。一种自动化、稳定且准确的帕金森病评估方法对于简化患者诊断流程以及为患者家属留出更多时间采取纠正措施具有重要意义。我们提出了一种方法,该方法通过持久图像的表示将TDA纳入帕金森病姿势变化数据的分析中。研究系统的拓扑结构已被证明对于数据中的微小变化具有不变性,并且在判别任务中表现良好。本文的贡献有两个方面。我们提出了一种方法来:1)将健康患者与患病患者区分开来;2)诊断疾病的严重程度。我们在一个涉及由健康老年人、健康年轻人和帕金森病患者组成的帕金森病数据集的应用中探索所提出方法的使用。我们的代码可在https://github.com/itsmeafra/Sublevel-Set-TDA获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验