Suppr超能文献

分析语音特征在帕金森病早期远程诊断中的有效性。

Analyzing the effectiveness of vocal features in early telediagnosis of Parkinson's disease.

作者信息

Erdogdu Sakar Betul, Serbes Gorkem, Sakar C Okan

机构信息

Department of Software Engineering, Bahcesehir University, Istanbul, Turkey.

Department of Biomedical Engineering, Yildiz Technical University, Istanbul, Turkey.

出版信息

PLoS One. 2017 Aug 9;12(8):e0182428. doi: 10.1371/journal.pone.0182428. eCollection 2017.

Abstract

The recently proposed Parkinson's Disease (PD) telediagnosis systems based on detecting dysphonia achieve very high classification rates in discriminating healthy subjects from PD patients. However, in these studies the data used to construct the classification model contain the speech recordings of both early and late PD patients with different severities of speech impairments resulting in unrealistic results. In a more realistic scenario, an early telediagnosis system is expected to be used in suspicious cases by healthy subjects or early PD patients with mild speech impairment. In this paper, considering the critical importance of early diagnosis in the treatment of the disease, we evaluate the ability of vocal features in early telediagnosis of Parkinson's Disease (PD) using machine learning techniques with a two-step approach. In the first step, using only patient data, we aim to determine the patient group with relatively greater severity of speech impairments using Unified Parkinson's Disease Rating Scale (UPDRS) score as an index of disease progression. For this purpose, we use three supervised and two unsupervised learning techniques. In the second step, we exclude the samples of this group of patients from the dataset, create a new dataset consisting of the samples of PD patients having less severity of speech impairments and healthy subjects, and use three classifiers with various settings to address this binary classification problem. In this classification problem, the highest accuracy of 96.4% and Matthew's Correlation Coefficient of 0.77 is obtained using support vector machines with third-degree polynomial kernel showing that vocal features can be used to build a decision support system for early telediagnosis of PD.

摘要

最近提出的基于检测发声障碍的帕金森病(PD)远程诊断系统在区分健康受试者和PD患者方面实现了非常高的分类率。然而,在这些研究中,用于构建分类模型的数据包含了早期和晚期PD患者的语音记录,这些患者的语音障碍严重程度不同,导致结果不切实际。在更现实的场景中,早期远程诊断系统预计将被健康受试者或有轻度语音障碍的早期PD患者用于可疑病例。在本文中,考虑到早期诊断在疾病治疗中的至关重要性,我们采用两步法使用机器学习技术评估语音特征在帕金森病(PD)早期远程诊断中的能力。第一步,仅使用患者数据,我们旨在以统一帕金森病评定量表(UPDRS)评分作为疾病进展指标,确定语音障碍相对更严重的患者组。为此,我们使用了三种监督学习技术和两种无监督学习技术。第二步,我们从数据集中排除这组患者的样本,创建一个由语音障碍较轻的PD患者样本和健康受试者组成的新数据集,并使用三种具有不同设置的分类器来解决这个二分类问题。在这个分类问题中,使用具有三次多项式核的支持向量机获得了最高96.4%的准确率和0.77的马修斯相关系数,表明语音特征可用于构建PD早期远程诊断的决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36f6/5549905/2a7f4bdf8284/pone.0182428.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验