Williamson James R, Heaton Kristin J, Lammert Adam, Finkelstein Katherine, Sturim Doug, Smalt Christopher, Ciccarelli Gregory, Quatieri Thomas F
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:832-836. doi: 10.1109/EMBC44109.2020.9175951.
Lapses in vigilance and slowed reactions due to mental fatigue can increase risk of accidents and injuries and degrade performance. This paper describes a method for rapid, unobtrusive detection of mental fatigue based on changes in electrodermal arousal (EDA), and changes in neuromotor coordination derived from speaking. Twenty-nine Soldiers completed a 2-hour battery of cognitive tasks intended to induce fatigue. Behavioral markers derived from audio and video during speech were acquired before and after the 2hour cognitive load tasks, as was EDA. Exposure to cognitive load produced detectable increases in neuromotor variability in speech and facial measures after load and even after a recovery period. A Gaussian mixture model classifier with crossvalidation and fusion across speech, video, and EDA produced an accuracy of AUC=0.99 in detecting a change in cognitive fatigue relative to a personalized baseline.
由于精神疲劳导致的警觉性下降和反应迟缓会增加事故和受伤风险,并降低工作表现。本文描述了一种基于皮肤电活动(EDA)变化以及说话时神经运动协调性变化的快速、非侵入性精神疲劳检测方法。29名士兵完成了一组旨在诱发疲劳的2小时认知任务。在2小时认知负荷任务前后,采集了语音过程中音频和视频的行为指标以及皮肤电活动。暴露于认知负荷后,即使在恢复期,语音和面部测量中的神经运动变异性也出现了可检测到的增加。一个采用交叉验证并融合语音、视频和皮肤电活动的高斯混合模型分类器在检测相对于个性化基线的认知疲劳变化时,曲线下面积(AUC)准确率达到了0.99。