Suppr超能文献

一种基于单类支持向量机异常检测的脑肿瘤分割框架。

A Brain Tumor Segmentation Framework Based on Outlier Detection Using One-Class Support Vector Machine.

作者信息

Jalalifar Ali, Soliman Hany, Ruschin Mark, Sahgal Arjun, Sadeghi-Naini Ali

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1067-1070. doi: 10.1109/EMBC44109.2020.9176263.

Abstract

Accurate segmentation of brain tumors is a challenging task and also a crucial step in diagnosis and treatment planning for cancer patients. Magnetic resonance imaging (MRI) is the standard imaging modality for detection, characterization, treatment planning and outcome evaluation of brain tumors. MRI scans are usually acquired at multiple sessions before and after the treatment. An automatic segmentation framework is highly desirable to segment brain tumors in MR images as it streamlines the image-guided radiation therapy workflow considerably. Automatic segmentation of brain tumors also facilitates an incremental development of data-driven systems for therapy outcome prediction based on radiomics analysis. In this study, an outlier-detection-based segmentation framework is proposed to delineate brain tumors in magnetic resonance (MR) images automatically. The proposed method considers the tumor and edema pixels in an MR image as outliers compared to the pixels associated with the healthy tissue. The framework generates two outlier masks using independent one-class support vector machines that operate on post-contrast T1-weighted (T1w) and T2-weighted-fluid-attenuation-inversion-recovery (T2-FLAIR) images. The outlier masks are subsequently refined and fused using a number of morphological and logical operators to estimate a tumor mask for each image slice. The framework was constructed and evaluated using the MRI data acquired from 35 and 5 patients with brain metastasis, respectively. The obtained results demonstrated an average Dice similarity coefficient and Hausdorff distance of 0.84 ± 0.06 and 1.85 ± 0.48 mm, respectively, between the manual (ground truth) and automatic tumor contours, on the independent test set.

摘要

脑肿瘤的精确分割是一项具有挑战性的任务,也是癌症患者诊断和治疗规划中的关键步骤。磁共振成像(MRI)是脑肿瘤检测、特征描述、治疗规划和疗效评估的标准成像方式。MRI扫描通常在治疗前后的多个阶段进行采集。由于能极大地简化图像引导放射治疗工作流程,因此非常需要一个自动分割框架来分割MR图像中的脑肿瘤。脑肿瘤的自动分割还促进了基于放射组学分析的治疗效果预测数据驱动系统的逐步发展。在本研究中,提出了一种基于异常值检测的分割框架,用于自动勾勒磁共振(MR)图像中的脑肿瘤。与健康组织相关的像素相比,该方法将MR图像中的肿瘤和水肿像素视为异常值。该框架使用独立的单类支持向量机生成两个异常值掩码,这些支持向量机作用于对比增强后的T1加权(T1w)和T2加权液体衰减反转恢复(T2-FLAIR)图像。随后,使用一些形态学和逻辑运算符对异常值掩码进行细化和融合,以估计每个图像切片的肿瘤掩码。该框架分别使用从35例和5例脑转移患者获取的MRI数据构建并进行评估。在独立测试集上,手动(真实)和自动肿瘤轮廓之间获得的结果表明,平均骰子相似系数和豪斯多夫距离分别为0.84±0.06和1.85±0.48毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验