Suppr超能文献

用于标注胸部X光图像异常的注意力引导深度神经网络:网络决策依据的可视化

An Attention-Guided Deep Neural Network for Annotating Abnormalities in Chest X-ray Images: Visualization of Network Decision Basis.

作者信息

Saednia Khadijeh, Jalalifar Ali, Ebrahimi Shahin, Sadeghi-Naini Ali

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1258-1261. doi: 10.1109/EMBC44109.2020.9175378.

Abstract

Despite the potential of deep convolutional neural networks for classification of thorax diseases from chest X-ray images, this task is still challenging as it is categorized as a weakly supervised learning problem, and deep neural networks in general suffer from a lack of interpretability. In this paper, a deep convolutional neural network framework with recurrent attention mechanism was investigated to annotate abnormalities in chest X-ray images. A modified MobileNet architecture was adapted in the framework for classification and the prediction difference analysis method was utilized to visualize the basis of network's decision on each image. A long short-term memory network was utilized as the attention model to focus on relevant regions of each image for classification. The framework was evaluated on NIH chest X-ray dataset. The attention-guided model versus the model with no attention mechanism could annotate the images in an independent test set with an F1-score of 0.58 versus 0.46, and an AUC of 0.94 versus 0.73. The obtained results implied that the proposed attention-guided model could outperform the other methods investigated previously for annotating the same dataset.

摘要

尽管深度卷积神经网络在从胸部X光图像中对胸部疾病进行分类方面具有潜力,但由于该任务被归类为弱监督学习问题,并且深度神经网络总体上缺乏可解释性,因此该任务仍然具有挑战性。在本文中,研究了一种具有循环注意力机制的深度卷积神经网络框架,用于标注胸部X光图像中的异常情况。该框架采用了改进的MobileNet架构进行分类,并利用预测差异分析方法来可视化网络对每张图像的决策依据。使用长短期记忆网络作为注意力模型,以聚焦于每张图像的相关区域进行分类。该框架在NIH胸部X光数据集上进行了评估。注意力引导模型与无注意力机制的模型相比,在独立测试集中标注图像时,F1分数分别为0.58和0.46,AUC分别为0.94和0.73。所得结果表明,所提出的注意力引导模型在标注同一数据集方面优于先前研究的其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验