Suppr超能文献

Thorax-Net:一种基于注意力正则化的深度学习神经网络,用于胸部 X 射线影像中胸部疾病的分类。

Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography.

出版信息

IEEE J Biomed Health Inform. 2020 Feb;24(2):475-485. doi: 10.1109/JBHI.2019.2928369. Epub 2019 Jul 12.

Abstract

Deep learning techniques have been increasingly used to provide more accurate and more accessible diagnosis of thorax diseases on chest radiographs. However, due to the lack of dense annotation of large-scale chest radiograph data, this computer-aided diagnosis task is intrinsically a weakly supervised learning problem and remains challenging. In this paper, we propose a novel deep convolutional neural network called Thorax-Net to diagnose 14 thorax diseases using chest radiography. Thorax-Net consists of a classification branch and an attention branch. The classification branch serves as a uniform feature extraction-classification network to free users from the troublesome hand-crafted feature extraction and classifier construction. The attention branch exploits the correlation between class labels and the locations of pathological abnormalities via analyzing the feature maps learned by the classification branch. Feeding a chest radiograph to the trained Thorax-Net, a diagnosis is obtained by averaging and binarizing the outputs of two branches. The proposed Thorax-Net model has been evaluated against three state-of-the-art deep learning models using the patientwise official split of the ChestX-ray14 dataset and against other five deep learning models using the imagewise random data split. Our results show that Thorax-Net achieves an average per-class area under the receiver operating characteristic curve (AUC) of 0.7876 and 0.896 in both experiments, respectively, which are higher than the AUC values obtained by other deep models when they were all trained with no external data.

摘要

深度学习技术已被越来越多地用于提供更准确和更易于访问的胸部疾病诊断的胸部 X 射线。然而,由于缺乏大规模胸部 X 射线数据的密集注释,这个计算机辅助诊断任务本质上是一个弱监督学习问题,仍然具有挑战性。在本文中,我们提出了一种名为 Thorax-Net 的新型深度卷积神经网络,用于使用胸部 X 射线诊断 14 种胸部疾病。Thorax-Net 由分类分支和注意力分支组成。分类分支作为一个统一的特征提取-分类网络,使用户不必费心进行手工特征提取和分类器构建。注意力分支通过分析分类分支学习的特征图,利用类标签与病理异常位置之间的相关性。将胸部 X 射线输入到经过训练的 Thorax-Net 中,通过对两个分支的输出进行平均和二值化,得到诊断结果。我们使用 ChestX-ray14 数据集的患者分割对提出的 Thorax-Net 模型进行了评估,并使用图像随机分割对其他五个深度学习模型进行了评估。我们的结果表明,Thorax-Net 在这两个实验中的平均每类接收器操作特征曲线 (AUC) 分别为 0.7876 和 0.896,高于其他深度学习模型在没有外部数据的情况下进行训练时获得的 AUC 值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验