Suppr超能文献

一种通过屏蔽同轴电缆为电阻抗断层成像(EIT)驱动负载的自适应电流源的性能

Performance of an Adaptive Current Source for EIT Driving Loads through a Shielded Coaxial Cable.

作者信息

Abdelwahab Ahmed, Shishvan Omid Rajabi, Saulnier Gary J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1448-1451. doi: 10.1109/EMBC44109.2020.9175910.

Abstract

In Electrical Impedance Tomography (EIT) the coaxial cables used to connect the electrodes to the electronics have long been a concern due to their impact on system performance. Driving the shield of the cable is useful, since it mitigates the shunt capacitance. However, this approach introduces complexity and, sometimes, stability issues. Using "active electrodes", i.e. placing the front end of the electronics at the electrode end of the cables, is also helpful but can introduce packaging and hygiene problems. In this paper, a new type of high-precision current source is described and its performance is studied when driving loads through a coaxial cable. This new current source adjusts its current output to compensate for current lost in any shunt impedance to ground, including the shunt losses in the cable. Experimental results for frequencies up to 1 MHz are provided, comparing performance with resistive and complex loads connected without a cable, with 1 m of RG-174 coaxial cable with a driven shield, and 1 m of RG-174 coaxial cable with a grounded shield. The results for all 3 cases are similar, demonstrating that the source can provide satisfactory performance with a grounded-shield cable.

摘要

在电阻抗断层成像(EIT)中,用于将电极连接到电子设备的同轴电缆长期以来一直是一个问题,因为它们会影响系统性能。驱动电缆的屏蔽层是有用的,因为它可以减轻并联电容。然而,这种方法会带来复杂性,有时还会出现稳定性问题。使用“有源电极”,即将电子设备的前端放置在电缆的电极端,也很有帮助,但可能会带来封装和卫生问题。本文描述了一种新型高精度电流源,并研究了其通过同轴电缆驱动负载时的性能。这种新型电流源会调整其电流输出,以补偿在任何对地并联阻抗中损失的电流,包括电缆中的并联损耗。提供了高达1 MHz频率的实验结果,将其性能与未使用电缆连接的电阻性和复数负载、带有驱动屏蔽层的1米RG - 174同轴电缆以及带有接地屏蔽层的1米RG - 174同轴电缆进行了比较。所有三种情况的结果相似,表明该电流源使用接地屏蔽电缆时能够提供令人满意的性能。

相似文献

1
Performance of an Adaptive Current Source for EIT Driving Loads through a Shielded Coaxial Cable.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1448-1451. doi: 10.1109/EMBC44109.2020.9175910.
2
DSP-based current source for electrical impedance tomography.
Physiol Meas. 2020 Jun 30;41(6):064002. doi: 10.1088/1361-6579/ab8f74.
3
Measuring Current Source Output Impedance in EIT Systems while Attached to a Load.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1452-1456. doi: 10.1109/EMBC44109.2020.9175416.
5
Current source design for electrical impedance tomography.
Physiol Meas. 2003 May;24(2):509-16. doi: 10.1088/0967-3334/24/2/361.
6
Comparison of a new integrated current source with the modified Howland circuit for EIT applications.
Physiol Meas. 2009 Oct;30(10):999-1007. doi: 10.1088/0967-3334/30/10/001. Epub 2009 Aug 26.
7
A high-precision voltage source for EIT.
Physiol Meas. 2006 May;27(5):S221-36. doi: 10.1088/0967-3334/27/5/S19. Epub 2006 Apr 24.
9
An Imaged Based Method for Universal Performance Evaluation of Electrical Impedance Tomography Systems.
IEEE Trans Biomed Circuits Syst. 2021 Jun;15(3):464-473. doi: 10.1109/TBCAS.2021.3094773. Epub 2021 Aug 12.
10
Reduction of resonant RF heating in intravascular catheters using coaxial chokes.
Magn Reson Med. 2000 Apr;43(4):615-9. doi: 10.1002/(sici)1522-2594(200004)43:4<615::aid-mrm19>3.0.co;2-b.

引用本文的文献

1
ACT5 Electrical Impedance Tomography System.
IEEE Trans Biomed Eng. 2024 Jan;71(1):227-236. doi: 10.1109/TBME.2023.3295771. Epub 2023 Dec 22.
2
Fast absolute 3D CGO-based electrical impedance tomography on experimental tank data.
Physiol Meas. 2022 Dec 6;43(12). doi: 10.1088/1361-6579/aca26b.

本文引用的文献

1
The ACE1 Electrical Impedance Tomography System for Thoracic Imaging.
IEEE Trans Instrum Meas. 2019 Sep;68(9):3137-3150. doi: 10.1109/tim.2018.2874127. Epub 2018 Nov 1.
2
DSP-based current source for electrical impedance tomography.
Physiol Meas. 2020 Jun 30;41(6):064002. doi: 10.1088/1361-6579/ab8f74.
3
Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.
IEEE Trans Biomed Circuits Syst. 2015 Feb;9(1):21-33. doi: 10.1109/TBCAS.2014.2311836. Epub 2014 May 19.
4
Simulation of a current source with a Cole-Cole load for multi-frequency electrical impedance tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6445-8. doi: 10.1109/EMBC.2013.6611030.
5
Electrical impedance tomography system based on active electrodes.
Physiol Meas. 2012 May;33(5):831-47. doi: 10.1088/0967-3334/33/5/831. Epub 2012 Apr 24.
6
Current source design for electrical impedance tomography.
Physiol Meas. 2003 May;24(2):509-16. doi: 10.1088/0967-3334/24/2/361.
8
Fast EIT data acquisition system with active electrodes and its application to cardiac imaging.
Physiol Meas. 1996 Nov;17 Suppl 4A:A25-32. doi: 10.1088/0967-3334/17/4a/005.
9
ACT3: a high-speed, high-precision electrical impedance tomograph.
IEEE Trans Biomed Eng. 1994 Aug;41(8):713-22. doi: 10.1109/10.310086.
10
High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice.
Med Biol Eng Comput. 1990 Sep;28(5):389-97. doi: 10.1007/BF02441961.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验