Annala Leevi, Neittaanmaki Noora, Paoli John, Zaar Oscar, Polonen Ilkka
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1600-1603. doi: 10.1109/EMBC44109.2020.9176292.
In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural networks compete. The generator tries to produce data that is similar to the measured data, and the discriminator tries to correctly classify the data as fake or real. This is a reinforcement learning model, where both models get reinforcement based on their performance. In the training of the discriminator we use data measured from skin cancer patients. The aim for the study is to develop a generator for augmenting hyperspectral skin cancer imagery.
在本研究中,我们开发了一种在高光谱皮肤癌图像生成中使用生成对抗神经网络的概念验证。生成对抗神经网络是一种神经网络,其中两个神经网络相互竞争。生成器试图生成与测量数据相似的数据,而判别器试图将数据正确分类为假或真。这是一个强化学习模型,其中两个模型都根据其性能获得强化。在判别器的训练中,我们使用从皮肤癌患者测量的数据。该研究的目的是开发一种用于增强高光谱皮肤癌图像的生成器。