Suppr超能文献

用于皮肤肿瘤诊断的机器学习方法

Machine Learning Approaches for Skin Neoplasm Diagnosis.

作者信息

Asaduzzaman Abu, Thompson Christian C, Uddin Md Jashim

机构信息

Wichita State University, College of Engineering, Wichita, Kansas 67260, United States.

Vanderbilt University, School of Medicine, Nashville, Tennessee 37235, United States.

出版信息

ACS Omega. 2024 Jul 15;9(30):32853-32863. doi: 10.1021/acsomega.4c03640. eCollection 2024 Jul 30.

Abstract

Approaches for skin neoplasm diagnosis include physical exam, skin biopsy, lab tests of biopsy samples, and image analyses. These approaches often involve error-prone and time-consuming processes. Recent studies show that machine learning shows promise in effectively classifying skin images into different categories such as melanoma and melanocytic nevi. In this work, we investigate machine learning approaches to enhance the performance of computer-aided diagnosis (CADx) systems to diagnose skin diseases. In the proposed CADx system, generative adversarial network (GAN) discriminator is used to identify (and remove) fake images. Exploratory data analysis (EDA) is applied to normalize the original data set for preventing model overfitting. Synthetic minority oversampling technique (SMOTE) is employed to rectify class imbalances in the original data set. To accurately classify skin images, the following machine learning models are utilized: linear discriminant analysis (LDA), support vector machine (SVM), convolutional neural network (CNN), and an ensemble CNN-SVM. Experimental results using the HAM10000 data set demonstrate the ability of the machine learning models to improve CADx performance in treating skin neoplasm. Initially, the LDA, SVM, CNN, and ensemble CNN-SVM show 49%, 72%, 77%, and 79% accuracy, respectively. After applying GAN (discriminator) and SMOTE, the LDA, SVM, CNN, and ensemble CNN-SVM show 76%, 83%, 87%, and 94% accuracy, respectively. We plan to explore other machine learning models and data sets in our next endeavor.

摘要

皮肤肿瘤诊断方法包括体格检查、皮肤活检、活检样本的实验室检测以及图像分析。这些方法往往涉及容易出错且耗时的过程。最近的研究表明,机器学习在将皮肤图像有效分类为不同类别(如黑色素瘤和黑素细胞痣)方面显示出前景。在这项工作中,我们研究机器学习方法以提高计算机辅助诊断(CADx)系统诊断皮肤疾病的性能。在所提出的CADx系统中,生成对抗网络(GAN)判别器用于识别(并去除)虚假图像。应用探索性数据分析(EDA)对原始数据集进行归一化处理,以防止模型过度拟合。采用合成少数过采样技术(SMOTE)来纠正原始数据集中的类别不平衡问题。为了准确分类皮肤图像,使用了以下机器学习模型:线性判别分析(LDA)、支持向量机(SVM)、卷积神经网络(CNN)以及集成的CNN - SVM。使用HAM10000数据集的实验结果证明了机器学习模型在治疗皮肤肿瘤方面提高CADx性能的能力。最初,LDA、SVM、CNN和集成的CNN - SVM的准确率分别为49%、72%、77%和79%。应用GAN(判别器)和SMOTE后,LDA、SVM、CNN和集成的CNN - SVM的准确率分别为76%、83%、87%和94%。我们计划在下一步工作中探索其他机器学习模型和数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2934/11292652/9c752ded0424/ao4c03640_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验