Caramazza Laura, De Angelis Annalisa, Remondini Daniel, Castellani Gastone, Liberti Micaela, Apollonio Francesca, Zironi Isabella
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2520-2523. doi: 10.1109/EMBC44109.2020.9175695.
Non-contact galvanotaxis as a way to drive the cells migration could be a promising tool for a variety of biomedical applications, such as wound healing control, avoiding the interaction between electrodes and cell cultures. To this regard, the efficacy of this electrical stimulus application has to be deeper studied to control physiological migratory phenomena in a remote way.Aim of this work is to provide an experimental investigation on the mobility of cells exposed to a static electric field in a "noncontact" mode, supported by a suitable modeling of the electric field distribution inside the experimental setup. In particular, scratch assays have been carried out placing the electrodes outside the cells medium support and changing the cells holder to study more than one configuration.Clinical Relevance- In this study the in vitro experiments on the non-contact galvanotaxis, together with the numerical simulations of the exposure setup, provide a way to investigate the effects that could affect an electrically drive cell migration.
非接触电趋性作为驱动细胞迁移的一种方式,可能成为用于多种生物医学应用的有前景的工具,如伤口愈合控制,避免电极与细胞培养物之间的相互作用。在这方面,必须更深入地研究这种电刺激应用的效果,以便以远程方式控制生理迁移现象。这项工作的目的是在“非接触”模式下,通过对实验装置内电场分布进行适当建模,对暴露于静电场中的细胞迁移率进行实验研究。具体而言,通过将电极置于细胞培养基支撑物外部并更换细胞支架来进行划痕试验,以研究多种配置。临床相关性——在本研究中,关于非接触电趋性的体外实验以及暴露装置的数值模拟,提供了一种研究可能影响电驱动细胞迁移的因素的方法。