Haddad Ali, Najafizadeh Laleh
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2865-2868. doi: 10.1109/EMBC44109.2020.9175394.
We propose a new approach that utilizes the dynamic state of cortical functional connectivity for the classification of task-based electroencephalographic (EEG) data. We introduce a novel feature extraction framework that locates functional networks in the cortex as they convene at different time intervals across different frequency bands. The framework starts by applying the wavelet transform to isolate, then augment, EEG frequency bands. Next, the time intervals of stationary functional states, within the augmented data, are identified using the source-informed segmentation algorithm. Functional networks are localized in the brain, during each segment, using a singular value decomposition-based approach. For feature selection, we propose a discriminative-associative algorithm, and use it to find the sub-networks showing the highest recurrence rate differences across the target tasks. The sequences of augmented functional networks are projected onto the identified sub-networks, for the final sequences of features. A dynamic recurrent neural network classifier is then used for classification. The proposed approach is applied to experimental EEG data to classify motor execution and motor imagery tasks. Our results show that an accuracy of 90% can be achieved within the first 500 msec of the cued task-planning phase.
我们提出了一种新方法,该方法利用皮质功能连接的动态状态对基于任务的脑电图(EEG)数据进行分类。我们引入了一种新颖的特征提取框架,该框架可在不同频段的不同时间间隔内,当皮质中的功能网络聚集时对其进行定位。该框架首先应用小波变换来分离并增强EEG频段。接下来,使用源信息分割算法识别增强数据中稳定功能状态的时间间隔。在每个时间段内,使用基于奇异值分解的方法将功能网络定位在大脑中。对于特征选择,我们提出了一种判别关联算法,并使用它来找到在目标任务中显示出最高复发率差异的子网络。将增强功能网络的序列投影到识别出的子网络上,以获得最终的特征序列。然后使用动态递归神经网络分类器进行分类。所提出的方法应用于实验EEG数据,以对运动执行和运动想象任务进行分类。我们的结果表明,在提示任务规划阶段的前500毫秒内可以达到90%的准确率。