Yeh W-L, Huang Y-C, Chiou J-H, Duann J-R, Chiou J-C
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4302-5. doi: 10.1109/EMBC.2013.6610497.
Motor imagery base brain-computer interface (BCI) is an appropriate solution for stroke patient to rehabilitate and communicate with external world. For such applications speculating whether the subjects are doing motor imagery is our primary mission. So the problem turns into how to precisely classify the two tasks, motor imagery and idle state, by using the subjects' electroencephalographic (EEG) signals. Feature extraction is a factor that significantly affects the classification result. Based on the concept of Continuous Wavelet Transform, we proposed a wavelet-liked feature extraction method for motor imagery discrimination. And to compensate the problem that the feature varies between subjects, we use the subjects' own EEG signals as the mother wavelet. After determining the feature vector, we choose Bayes linear discriminant analysis (LDA) as our classifier. The BCI competition III dataset IVa is used to evaluate the classification performance. Comparing with variance and fast Fourier transform (FFT) methods in feature extraction, 2.02% and 16.96% improvement in classification accuracy are obtained in this work respectively.
基于运动想象的脑机接口(BCI)是中风患者康复并与外界交流的一种合适解决方案。对于此类应用,推测受试者是否在进行运动想象是我们的首要任务。因此问题就变成了如何利用受试者的脑电图(EEG)信号精确地对运动想象和空闲状态这两项任务进行分类。特征提取是显著影响分类结果的一个因素。基于连续小波变换的概念,我们提出了一种用于运动想象辨别的类小波特征提取方法。并且为了弥补特征在不同受试者之间存在差异的问题,我们使用受试者自身的EEG信号作为母小波。确定特征向量后,我们选择贝叶斯线性判别分析(LDA)作为我们的分类器。使用BCI竞赛III数据集IVa来评估分类性能。与特征提取中的方差法和快速傅里叶变换(FFT)方法相比,这项工作分别在分类准确率上提高了2.02%和16.96%。