Suppr超能文献

使用无线干电极系统评估认知负荷时,时域脑电图特征的重测信度

Test-Retest Reliability of Time-Domain EEG Features to Assess Cognitive Load Using a Wireless Dry-Electrode System.

作者信息

Ortiz O, Blustein D, Kuruganti U

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2885-2888. doi: 10.1109/EMBC44109.2020.9175762.

Abstract

Human Machine Interfaces (HMIs) can provide critical support and improve daily task functionality for prosthesis users or social interaction for patients with locked-in syndrome using an assistive communication device. One goal in the development of sophisticated HMIs is to reduce the cognitive load (CL) they place on the user to promote the use of the technology. Electroencephalogram (EEG)-derived measures collected with wired wet-electrode systems have been used to assess CL in laboratory environments and have demonstrated acceptable test-retest reliability. Assessment of CL during real-world unconstrained HMI operation, however, requires the use of a wireless dry-electrode EEG system which provides easier electrode application and untethered movement. However, the test-retest reliability of wireless dry-electrode systems to quantify CL has not been explored. Ensuring the consistent capture of CL-related signals across multiple sessions is critical if these devices are to be used to assess how improvements in HMIs affect CL. Therefore, the current study used a wireless dry-electrode EEG system to compare Evoked Response Potential (ERP) features of a simple auditory oddball task to measure CL during two separate testing sessions a week apart. ERPs of 11 subjects were recorded while participants performed a virtual task at two difficulty levels. A significant correlation was found between the P300 component of the ERPs and subjective ratings of CL during both testing sessions. Furthermore, there was a statistically significant test-retest reliability for this same ERP feature and similar signal-to-noise ratios (SNRs) across sessions.Clinical Relevance- This is an initial step in validating wireless dry-electrode EEG systems to assess cognitive load across multiple sessions. The evidence presented is critical if dry-wireless EEG systems are to be used to identify aspects of HMIs that reduce CL in clinical and real-life environments. Assessing CL in unconstrained environments can better inform clinicians and technology developers in their design of future HMIs.

摘要

人机接口(HMIs)可为假肢使用者提供关键支持并改善其日常任务功能,或使用辅助通信设备为闭锁综合征患者改善社交互动。先进人机接口开发的一个目标是减轻其给用户带来的认知负荷(CL),以促进该技术的使用。通过有线湿电极系统采集的脑电图(EEG)衍生指标已用于实验室环境中评估认知负荷,并已证明具有可接受的重测信度。然而,在现实世界中无约束的人机接口操作过程中评估认知负荷,需要使用无线干电极脑电图系统,该系统电极应用更简便且可实现无束缚移动。然而,尚未探索无线干电极系统量化认知负荷的重测信度。如果要使用这些设备来评估人机接口的改进如何影响认知负荷,那么确保在多个会话中一致捕获与认知负荷相关的信号至关重要。因此,本研究使用无线干电极脑电图系统,比较简单听觉Oddball任务的诱发电位(ERP)特征,以测量在相隔一周的两个单独测试会话期间的认知负荷。在参与者执行两个难度级别的虚拟任务时,记录了11名受试者的ERP。在两个测试会话期间,ERP的P300成分与认知负荷的主观评分之间均发现显著相关性。此外,同一ERP特征在各会话间具有统计学上显著的重测信度,且信噪比(SNR)相似。临床意义——这是验证无线干电极脑电图系统以评估多个会话间认知负荷的第一步。如果要使用无线干电极脑电图系统来识别在临床和现实生活环境中降低认知负荷的人机接口方面,所提供的证据至关重要。在无约束环境中评估认知负荷可为临床医生和技术开发者设计未来的人机接口提供更好的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验