Chiang Kuan-Jung, Nakanishi Masaki, Jung Tzyy-Ping
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3070-3073. doi: 10.1109/EMBC44109.2020.9176205.
Task-related component analysis (TRCA) has been the most effective spatial filtering method in implementing high-speed brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs). TRCA is a data-driven method, in which spatial filters are optimized to maximize inter-trial covariance of time-locked electroencephalographic (EEG) data, formulated as a generalized eigenvalue problem. Although multiple eigenvectors can be obtained by TRCA, the traditional TRCA-based SSVEP detection considered only one that corresponds to the largest eigenvalue to reduce its computational cost. This study proposes using multiple eigen-vectors to classify SSVEPs. Specifically, this study integrates a task consistency test, which statistically identifies whether the component reconstructed by each eigenvector is task-related or not, with the TRCA-based SSVEP detection method. The proposed method was evaluated by using a 12-class SSVEP dataset recorded from 10 subjects. The study results indicated that the task consistency test usually identified and suggested more than one eigenvectors (i.e., spatial filters). Further, the use of additional spatial filters significantly improved the classification accuracy of the TRCA-based SSVEP detection.
在基于稳态视觉诱发电位(SSVEP)实现高速脑机接口(BCI)方面,任务相关成分分析(TRCA)一直是最有效的空间滤波方法。TRCA是一种数据驱动的方法,其中空间滤波器经过优化,以最大化锁时脑电图(EEG)数据的试验间协方差,这被公式化为一个广义特征值问题。虽然TRCA可以获得多个特征向量,但传统的基于TRCA的SSVEP检测只考虑对应最大特征值的一个特征向量,以降低计算成本。本研究提出使用多个特征向量对SSVEP进行分类。具体而言,本研究将一项任务一致性测试与基于TRCA的SSVEP检测方法相结合,该测试从统计学角度识别每个特征向量重建的成分是否与任务相关。所提出的方法通过使用从10名受试者记录的12类SSVEP数据集进行评估。研究结果表明,任务一致性测试通常能识别并推荐不止一个特征向量(即空间滤波器)。此外,使用额外的空间滤波器显著提高了基于TRCA的SSVEP检测的分类准确率。