IEEE Trans Neural Syst Rehabil Eng. 2022;30:851-859. doi: 10.1109/TNSRE.2022.3162029. Epub 2022 Apr 5.
Due to the high robustness to artifacts, steady-state visual evoked potential (SSVEP) has been widely applied to construct high-speed brain-computer interfaces (BCIs). Thus far, many spatial filtering methods have been proposed to enhance the target identification performance for SSVEP-based BCIs, and task-related component analysis (TRCA) is among the most effective ones. In this paper, we further extend TRCA and propose a new method called Latency Aligning TRCA (LA-TRCA), which aligns visual latencies on channels to obtain accurate phase information from task-related signals. Based on the SSVEP wave propagation theory, SSVEP spreads from posterior occipital areas over the cortex with a fixed phase velocity. Via estimation of the phase velocity using phase shifts of channels, the visual latencies on different channels can be determined for inter-channel alignment. TRCA is then applied to aligned data epochs for target recognition. For the validation purpose, the classification performance comparison between the proposed LA-TRCA and TRCA-based expansions were performed on two different SSVEP datasets. The experimental results illustrated that the proposed LA-TRCA method outperformed the other TRCA-based expansions, which thus demonstrated the effectiveness of the proposed approach for enhancing the SSVEP detection performance.
由于对伪影具有较高的鲁棒性,稳态视觉诱发电位(SSVEP)已被广泛应用于构建高速脑机接口(BCI)。迄今为止,已经提出了许多空间滤波方法来提高基于 SSVEP 的 BCI 的目标识别性能,其中任务相关成分分析(TRCA)是最有效的方法之一。在本文中,我们进一步扩展了 TRCA,并提出了一种称为潜伏期对齐 TRCA(LA-TRCA)的新方法,该方法通过对齐通道上的潜伏期来从与任务相关的信号中获得准确的相位信息。基于 SSVEP 波传播理论,SSVEP 从枕后区域在皮层上以固定的相速度传播。通过使用通道的相移来估计相速度,可以确定不同通道上的视觉潜伏期,以便进行通道间对齐。然后,将 TRCA 应用于对齐的数据段进行目标识别。为了验证目的,在两个不同的 SSVEP 数据集上对所提出的基于 LA-TRCA 和 TRCA 的扩展进行了分类性能比较。实验结果表明,所提出的 LA-TRCA 方法优于其他基于 TRCA 的扩展,从而证明了该方法在提高 SSVEP 检测性能方面的有效性。