Suppr超能文献

包封组织生长对神经袖套电极选择性记录的影响:一项模拟研究

Impact of Encapsulation Tissue Growth on Selective Recording in Nerve Cuff Electrodes: A Simulation Study.

作者信息

Sammut Stephen, Koh Ryan G L, Zariffa Jose

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3444-3447. doi: 10.1109/EMBC44109.2020.9176736.

Abstract

Peripheral nerve interfaces (PNIs) allow us to extract motor, sensory and autonomic information from the nervous system and use it as control signals in neuroprosthetic and neuromodulation systems. Recent efforts have aimed to improve the recording selectivity of PNIs, including by using spatiotemporal patterns from multi-contact nerve cuff electrodes as input to a convolutional neural network (CNN). Before such a methodology can be translated to humans, its performance in chronic implantation scenarios must be evaluated. We investigated the performance of a CNN-based selective recording approach in the presence of encapsulation tissue, a common immune response to the implantation of a neural interface. This factor was simulated using anatomically accurate computational models of a rat sciatic nerve and nerve cuff electrode. Performance over time was examined in three conditions: training the CNN at baseline only, supervised retraining with explicitly labeled data at periodic intervals, and a semi-supervised self-learning approach. The periodic recalibration approach demonstrated the best results, with an average F1-score of 0.96 ± 0.04, 0.89 ± 0.08, and 0.80 ± 0.08 for SNRs of -5 dB, -10 dB, and -15 dB, respectively, across all time points. Thus, the periodic recalibration approach may be an effective solution to compensate for changes in signal recordings seen over time as a result of encapsulation tissue. The self-learning approach, in which a network is retrained periodically using predicted labels, generally showed degradation in classification performance over time, even as the frequency of training was increased, attributed to an eventual accumulation of mislabeled training data.

摘要

外周神经接口(PNIs)使我们能够从神经系统中提取运动、感觉和自主神经信息,并将其用作神经假体和神经调节系统中的控制信号。最近的研究致力于提高PNIs的记录选择性,包括将多触点神经袖套电极的时空模式用作卷积神经网络(CNN)的输入。在将这种方法应用于人类之前,必须评估其在长期植入情况下的性能。我们研究了基于CNN的选择性记录方法在存在包裹组织(这是对神经接口植入的一种常见免疫反应)的情况下的性能。使用大鼠坐骨神经和神经袖套电极的解剖学精确计算模型模拟了这一因素。在三种情况下检查了随时间的性能:仅在基线时训练CNN、定期使用明确标记的数据进行监督再训练以及半监督自学习方法。定期重新校准方法显示出最佳结果,在所有时间点上,对于信噪比为-5 dB、-10 dB和-15 dB的情况,平均F1分数分别为0.96±0.04、0.89±0.08和0.80±0.08。因此,定期重新校准方法可能是一种有效的解决方案,以补偿由于包裹组织导致的信号记录随时间的变化。自学习方法是指网络使用预测标签定期重新训练,随着时间的推移,即使训练频率增加,分类性能通常也会下降,这归因于错误标记训练数据的最终积累。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验