Suppr超能文献

外周神经时空记录中自然诱发复合动作电位的分类。

Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada.

KITE, Toronto Rehab, University Health Network, Toronto, ON, M5G 2A2, Canada.

出版信息

Sci Rep. 2019 Jul 31;9(1):11145. doi: 10.1038/s41598-019-47450-8.

Abstract

Peripheral neural signals have the potential to provide the necessary motor, sensory or autonomic information for robust control in many neuroprosthetic and neuromodulation applications. However, developing methods to recover information encoded in these signals is a significant challenge. We introduce the idea of using spatiotemporal signatures extracted from multi-contact nerve cuff electrode recordings to classify naturally evoked compound action potentials (CAP). 9 Long-Evan rats were implanted with a 56-channel nerve cuff on the sciatic nerve. Afferent activity was selectively evoked in the different fascicles of the sciatic nerve (tibial, peroneal, sural) using mechano-sensory stimuli. Spatiotemporal signatures of recorded CAPs were used to train three different classifiers. Performance was measured based on the classification accuracy, F-score, and the ability to reconstruct original firing rates of neural pathways. The mean classification accuracies, for a 3-class problem, for the best performing classifier was 0.686 ± 0.126 and corresponding mean F-score was 0.605 ± 0.212. The mean Pearson correlation coefficients between the original firing rates and estimated firing rates found for the best classifier was 0.728 ± 0.276. The proposed method demonstrates the possibility of classifying individual naturally evoked CAPs in peripheral neural signals recorded from extraneural electrodes, allowing for more precise control signals in neuroprosthetic applications.

摘要

周围神经信号有可能为许多神经假体和神经调节应用中的强大控制提供必要的运动、感觉或自主信息。然而,开发从这些信号中恢复信息的方法是一个重大挑战。我们提出了一种使用从多接触神经袖带电极记录中提取的时空特征来对自然诱发的复合动作电位 (CAP) 进行分类的想法。9 只长耳兔被植入坐骨神经上的 56 通道神经袖带。使用机械感觉刺激选择性地在坐骨神经的不同束(胫神经、腓神经、腓肠神经)中诱发传入活动。记录的 CAP 的时空特征用于训练三个不同的分类器。性能基于分类准确性、F 分数和重建神经通路原始放电率的能力来衡量。对于表现最佳的分类器,用于 3 类问题的平均分类准确率为 0.686±0.126,相应的平均 F 分数为 0.605±0.212。对于表现最佳的分类器,原始放电率和估计放电率之间的平均皮尔逊相关系数为 0.728±0.276。所提出的方法证明了在外周神经信号中从神经外电极记录的单个自然诱发的 CAP 进行分类的可能性,从而为神经假体应用中的更精确控制信号提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d5/6668407/5fc80cbb185c/41598_2019_47450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验