Varatharajah Yogatheesan, Berry Brent, Joseph Boney, Balzekas Irena, Kremen Vaclav, Brinkmann Benjamin, Worrell Gregory, Iyer Ravishankar
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3460-3464. doi: 10.1109/EMBC44109.2020.9176668.
The absence of epileptiform activity in a scalp electroencephalogram (EEG) recorded from a potential epilepsy patient can cause delays in clinical care delivery. Here we present a machine-learning-based approach to find evidence for epilepsy in scalp EEGs that do not contain any epileptiform activity, according to expert visual review (i.e., "normal" EEGs). We found that deviations in the EEG features representing brain health, such as the alpha rhythm, can indicate the potential for epilepsy and help lateralize seizure focus, even when commonly recognized epileptiform features are absent. Hence, we developed a machine-learning-based approach that utilizes alpha-rhythm-related features to classify 1) whether an EEG was recorded from an epilepsy patient, and 2) if so, the seizure-generating side of the patient's brain. We evaluated our approach using "normal" scalp EEGs of 48 patients with drug-resistant focal epilepsy and 144 healthy individuals, and a naive Bayes classifier achieved area under ROC curve (AUC) values of 0.81 and 0.72 for the two classification tasks, respectively. These findings suggest that our methodology is useful in the absence of interictal epileptiform activity and can enhance the probability of diagnosing epilepsy at the earliest possible time.
在对疑似癫痫患者进行头皮脑电图(EEG)记录时,若未检测到癫痫样活动,可能会导致临床治疗延迟。在此,我们提出一种基于机器学习的方法,用于在经专家视觉评估显示无任何癫痫样活动的头皮脑电图(即“正常”脑电图)中寻找癫痫证据。我们发现,代表大脑健康状况的脑电图特征(如α节律)出现偏差,即便没有常见的癫痫样特征,也可能预示癫痫发作的可能性,并有助于确定癫痫发作的病灶侧别。因此,我们开发了一种基于机器学习的方法,利用与α节律相关的特征进行以下两项分类:1)判断脑电图是否来自癫痫患者;2)若为癫痫患者,确定其大脑产生癫痫发作的一侧。我们使用48例耐药性局灶性癫痫患者和144名健康个体的“正常”头皮脑电图对该方法进行了评估,对于上述两项分类任务,朴素贝叶斯分类器的ROC曲线下面积(AUC)值分别达到了0.81和0.72。这些结果表明,我们的方法在缺乏发作间期癫痫样活动的情况下依然有效,能够提高尽早诊断癫痫的概率。