Suppr超能文献

深部脑刺激治疗特发性震颤的反弹效应及基于神经数据的症状严重程度评估

Rebound effect in deep brain stimulation for essential tremor and symptom severity estimation from neural data.

作者信息

Cooper Sarah S, Ferleger Benjamin I, Ko Andrew L, Herron Jeffrey A, Chizeck Howard J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3621-3624. doi: 10.1109/EMBC44109.2020.9175908.

Abstract

Deep brain stimulation (DBS) is a safe and established treatment for essential tremor (ET). However, there remains considerable room for improvement due to concerns associated with the initial implant surgery, semi-regular revision surgeries for battery replacements, and side effects including paresthesia, gait ataxia, and emotional disinhibition that have been associated with continuous, or conventional, DBS (cDBS) treatment. Adaptive DBS (aDBS) seeks to ameliorate some of these concerns by using feedback from either an external wearable or implanted sensor to modulate stimulation parameters as needed. aDBS has been demonstrated to be as or more effective than cDBS, but the purely binary control system most commonly deployed by aDBS systems likely still provides sub-optimal treatment and may introduce new issues. One example of these issues is rebound effect, in which the tremor symptoms of an ET patient receiving DBS therapy temporarily worsen after cessation of stimulation before leveling out to a steady state. Here is presented a quantitative analysis of rebound effect in 3 patients receiving DBS for ET. Rebound was evident in all 3 patients by both clinical assessment and inertial measurement unit data, peaking by the latter at T = 6.65 minutes after cessation of stimulation. Using features extracted from neural data, linear regression was applied to predict tremor severity, with $R_{avg{\text{ }}}^2 = 0.82$. These results strongly suggest that rebound effect and the additional information made available by rebound effect should be considered and exploited when designing novel aDBS systems.

摘要

深部脑刺激(DBS)是治疗特发性震颤(ET)的一种安全且成熟的方法。然而,由于与初始植入手术、用于电池更换的半定期翻修手术以及包括感觉异常、步态共济失调和情感脱抑制等副作用相关的问题,该方法仍有很大的改进空间,这些副作用与持续或传统的DBS(cDBS)治疗有关。自适应DBS(aDBS)试图通过使用来自外部可穿戴设备或植入式传感器的反馈来根据需要调节刺激参数,从而缓解其中一些问题。aDBS已被证明与cDBS一样有效或更有效,但aDBS系统最常采用的纯二元控制系统可能仍提供次优治疗,并且可能会引入新问题。这些问题的一个例子是反弹效应,即接受DBS治疗的ET患者的震颤症状在刺激停止后会暂时恶化,然后才趋于稳定状态。本文对3例接受DBS治疗ET的患者的反弹效应进行了定量分析。通过临床评估和惯性测量单元数据,在所有3例患者中均明显出现了反弹效应,后者在刺激停止后T = 6.65分钟时达到峰值。利用从神经数据中提取的特征,应用线性回归来预测震颤严重程度,平均决定系数(R_{avg{\text{ }}}^2 = 0.82)。这些结果强烈表明,在设计新型aDBS系统时,应考虑并利用反弹效应以及反弹效应提供的额外信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验