J. Crayton Pruitt Department of Biomedical Engineering, Gainesville, FL, USA.
Department of Neuroscience, Norman Fixel Institute for Neurological Diseases, Gainesville, FL, USA.
Brain Stimul. 2021 Nov-Dec;14(6):1434-1443. doi: 10.1016/j.brs.2021.09.002. Epub 2021 Sep 20.
Deep brain stimulation (DBS) is an effective surgical therapy for individuals with essential tremor (ET). However, DBS operates continuously, resulting in adverse effects such as postural instability or dysarthria. Continuous DBS (cDBS) also presents important practical issues including limited battery life of the implantable neurostimulator (INS). Collectively, these shortcomings impact optimal therapeutic benefit in ET.
The goal of the study was to establish a physiology-driven responsive DBS (rDBS) system to provide targeted and personalized therapy based on electromyography (EMG) signals.
Ten participants with ET underwent rDBS using Nexus-D, a Medtronic telemetry wand that acts as a direct conduit to the INS by modulating stimulation voltage. Two different rDBS paradigms were tested: one driven by one EMG (single-sensor) and another driven by two or more EMGs (multi-sensor). The feature(s) used in the rDBS algorithms was the pow2er in the participant's tremor frequency band derived from the sensors controlling stimulation. Both algorithms were trained on kinetic and postural data collected during DBS off and cDBS states.
Using established clinical scales and objective measurements of tremor severity, we confirm that both rDBS paradigms deliver equivalent clinical benefit as cDBS. Moreover, both EMG-driven rDBS paradigms delivered less total electrical energy translating to an increase in the battery life of the INS.
The results of this study verify that EMG-driven rDBS provides clinically equivalent tremor suppression compared to cDBS, while delivering less total electrical energy. Controlling stimulation using a dynamic rDBS paradigm can mitigate limitations of traditional cDBS systems.
深部脑刺激(DBS)是治疗原发性震颤(ET)患者的有效手术疗法。然而,DBS 持续运作,导致姿势不稳或构音障碍等不良反应。连续 DBS(cDBS)还存在重要的实际问题,包括植入式神经刺激器(INS)的电池寿命有限。这些缺点共同影响了 ET 的最佳治疗效果。
本研究旨在建立一种基于肌电图(EMG)信号的生理驱动反应性 DBS(rDBS)系统,提供靶向和个性化治疗。
10 名 ET 患者使用 Nexus-D 进行 rDBS,Nexus-D 是一种美敦力遥测棒,可通过调节刺激电压作为 INS 的直接导管。测试了两种不同的 rDBS 范式:一种由一个 EMG(单传感器)驱动,另一种由两个或更多 EMG(多传感器)驱动。rDBS 算法中使用的特征是源自控制刺激的传感器的参与者震颤频段中的 pow2er。这两种算法都是在 DBS 关闭和 cDBS 状态下收集的运动和姿势数据上进行训练的。
使用既定的临床量表和震颤严重程度的客观测量,我们确认这两种 rDBS 范式都提供与 cDBS 相同的临床益处。此外,两种 EMG 驱动的 rDBS 范式都提供了更少的总电能,从而延长了 INS 的电池寿命。
这项研究的结果验证了 EMG 驱动的 rDBS 与 cDBS 相比,提供了等效的震颤抑制作用,同时消耗的总电能更少。使用动态 rDBS 范式控制刺激可以缓解传统 cDBS 系统的局限性。