Suppr超能文献

利用时空信息表征运动意图的多种模式,用于中风幸存者的直观主动运动训练。

Characterizing Multiple Patterns of Motor Intent Using Spatial-Temporal Information for Intuitively Active Motor Training in Stroke Survivors.

作者信息

Samuel Oluwarotimi Williams, Grace Asogbon Mojisola, Geng Yanjuan, Rusydi Muhammad I, Mzurikwao Zacharia B, Chen Shixiong, Fang Peng, Li Guanglin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3831-3834. doi: 10.1109/EMBC44109.2020.9176308.

Abstract

Upper extremity motor function loss severely affects stroke survivors during daily life activities. Different rehabilitation robotic systems have been developed to allow stroke survivors regain their motor function. Meanwhile, most of the robots only operate in a passive mode and restrict the users to navigate predefined trajectories which may not align with their motion intent, thus limiting motor recovery. One way to resolve this issue would be to utilize a decoded movement intent to trigger intuitively active motor training for patients. In this direction, this study proposed and investigated the use of spatial-temporal neuromuscular descriptor (STD) for optimal decoding of multiple patterns of movement intents in patient to provide inputs for active motor training in the rehabilitation robotic systems. The STD performance was validated using High-Density surface electromyogram recordings from five stroke survivors who performed 21 limb movements. Experimental results show that the STD achieved a significant reduction in limb movement classification error (13.36%) even in the presence of the inevitable White Gaussian Noise compared to other methods (p<0.05). The STD also showed obvious class separability for individual movement. Findings from this study suggest that the STD may provide potential inputs for intuitively active motor training in stroke rehabilitation robotic systems.Clinical Relevance- This study showed that spatial-temporal neuromuscular information could aid adequate decoding of movement intents upon which intuitively active motor training could be achieved in stroke rehabilitation robotic systems.

摘要

上肢运动功能丧失严重影响中风幸存者的日常生活活动。人们开发了不同的康复机器人系统,以使中风幸存者恢复其运动功能。与此同时,大多数机器人仅以被动模式运行,限制用户沿着可能与他们的运动意图不一致的预定义轨迹移动,从而限制了运动恢复。解决这个问题的一种方法是利用解码的运动意图为患者触发直观的主动运动训练。在这个方向上,本研究提出并研究了使用时空神经肌肉描述符(STD)对患者的多种运动意图模式进行最佳解码,以便为康复机器人系统中的主动运动训练提供输入。使用来自五名中风幸存者的高密度表面肌电图记录对STD性能进行了验证,这些幸存者进行了21次肢体运动。实验结果表明,与其他方法相比,即使存在不可避免的高斯白噪声,STD也能显著降低肢体运动分类误差(13.36%)(p<0.05)。STD对个体运动也显示出明显的类别可分离性。本研究结果表明,STD可能为中风康复机器人系统中的直观主动运动训练提供潜在输入。临床相关性——本研究表明,时空神经肌肉信息有助于对运动意图进行充分解码,在此基础上,可以在中风康复机器人系统中实现直观的主动运动训练。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验