Suppr超能文献

用于检测步态过程中方向变化的空间、时间和频率特征的选择。

Selection of Spatial, Temporal and Frequency Features to Detect Direction Changes During Gait.

作者信息

Soriano-Segura Paula, Ianez Eduardo, Quiles Vicente, Ferrero Laura, Ortiz Mario, Azorin Jose M

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3835-3838. doi: 10.1109/EMBC44109.2020.9176164.

Abstract

This paper studies the direction changes during the gait by means of two different distributions of electrodes located in the motor, premotor and occipital areas. The objective is analyzing which areas are involved in the detection of the intention of turning while the person is walking. The signals in both options are characterized with frequency and temporal features and classified following a cross-validation process. A 95% of success rate is achieved when the electrodes are disposed along the motor, premotor and occipital areas.Clinical Relevance- The objective of this study is applying the acknowledgements obtained in the designing of a brain-machine interface (BMI) based in the detection of the intention of the direction change during the gait. This BMI has clinical relevance in the rehabilitation of the gait in patients with motor injuries, assisting the patient to perform the movements as realistic as it is possible.

摘要

本文通过位于运动区、运动前区和枕叶区的两种不同电极分布方式研究步态过程中的方向变化。目的是分析人在行走时哪些区域参与了转弯意图的检测。两种方案中的信号都通过频率和时间特征进行表征,并按照交叉验证过程进行分类。当电极沿运动区、运动前区和枕叶区布置时,成功率达到95%。临床相关性——本研究的目的是将在基于步态中方向变化意图检测的脑机接口(BMI)设计中获得的认知应用起来。这种BMI在运动损伤患者的步态康复中具有临床相关性,可协助患者尽可能逼真地进行运动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验