Suppr超能文献

基于无监督活动模式编码的人类工作活动识别可视化工作日志

Visualizing Worklog Based on Human Working Activity Recognition Using Unsupervised Activity Pattern Encoding.

作者信息

Minusa Shunsuke, Tanaka Takeshi, Kuriyama Hiroyuki

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4165-4168. doi: 10.1109/EMBC44109.2020.9176710.

Abstract

Wearable motion sensor-based complex activity recognition during working hours has recently been studied to evaluate and thereby improve worker productivity. In the application of this technique to practical fields, one of the biggest challenges is performing time-consuming modeling tasks such as data labeling and hand-crafted feature extraction. One way to enable faster modeling is to decrease the time required for the manual tasks by making use of unlabeled motion datasets and the characteristics of complex activities. In this study, we propose a working activity recognition method that combines unsupervised encoding of the activity patterns of motions (denoted as "atomic activities"), the representation of working activities by combination of atomic activities, and the integration of additional information such as sensor time. We evaluated our method using an actual dataset from the caregiving field and found that it had an equivalent recognition performance (70.3% macro F-measure) to conventional hand-crafted feature extraction method. This is also comparable to that of previous methods using large labeled datasets. We also found that our method could visualize daily work processes with the accuracy of 71.2%. These results indicate that the proposed method has the potential to contribute to the rapid implementation of working activity recognition in actual working fields.

摘要

最近,人们对基于可穿戴运动传感器在工作时间进行复杂活动识别展开了研究,以评估并提高工人的生产力。在将这项技术应用于实际领域时,最大的挑战之一是执行耗时的建模任务,如数据标注和手工特征提取。实现更快建模的一种方法是利用未标注的运动数据集和复杂活动的特征,减少手动任务所需的时间。在本研究中,我们提出了一种工作活动识别方法,该方法结合了对运动活动模式(称为“原子活动”)的无监督编码、通过原子活动组合表示工作活动以及整合诸如传感器时间等附加信息。我们使用来自护理领域的实际数据集对我们的方法进行了评估,发现它具有与传统手工特征提取方法相当的识别性能(宏F值为70.3%)。这也与之前使用大型标注数据集的方法相当。我们还发现,我们的方法能够以71.2%的准确率可视化日常工作流程。这些结果表明,所提出的方法有潜力为在实际工作领域快速实施工作活动识别做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验