Suppr超能文献

基于惯性测量单元的人体活动识别运动轨迹热图。

IMU-Based Movement Trajectory Heatmaps for Human Activity Recognition.

机构信息

Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany.

出版信息

Sensors (Basel). 2020 Dec 15;20(24):7179. doi: 10.3390/s20247179.

Abstract

Recent trends in ubiquitous computing have led to a proliferation of studies that focus on human activity recognition (HAR) utilizing inertial sensor data that consist of acceleration, orientation and angular velocity. However, the performances of such approaches are limited by the amount of annotated training data, especially in fields where annotating data is highly time-consuming and requires specialized professionals, such as in healthcare. In image classification, this limitation has been mitigated by powerful oversampling techniques such as data augmentation. Using this technique, this work evaluates to what extent transforming inertial sensor data into movement trajectories and into 2D heatmap images can be advantageous for HAR when data are scarce. A convolutional long short-term memory (ConvLSTM) network that incorporates spatiotemporal correlations was used to classify the heatmap images. Evaluation was carried out on Deep Inertial Poser (DIP), a known dataset composed of inertial sensor data. The results obtained suggest that for datasets with large numbers of subjects, using state-of-the-art methods remains the best alternative. However, a performance advantage was achieved for small datasets, which is usually the case in healthcare. Moreover, movement trajectories provide a visual representation of human activities, which can help researchers to better interpret and analyze motion patterns.

摘要

近年来,普及计算的发展趋势导致了大量研究集中在利用包含加速度、方向和角速度的惯性传感器数据进行人体活动识别 (HAR)。然而,这些方法的性能受到标注训练数据的数量的限制,特别是在数据标注非常耗时且需要专业人员的领域,例如医疗保健。在图像分类中,这种限制通过强大的过采样技术(例如数据增强)得到缓解。利用这项技术,本工作评估了当数据稀缺时,将惯性传感器数据转换为运动轨迹和 2D 热图图像对 HAR 有何优势。我们使用了一种结合时空相关性的卷积长短期记忆 (ConvLSTM) 网络来对热图图像进行分类。评估是在 Deep Inertial Poser (DIP) 上进行的,这是一个由惯性传感器数据组成的知名数据集。结果表明,对于包含大量主体的数据集,使用最先进的方法仍然是最佳选择。然而,对于通常在医疗保健中遇到的小数据集,性能优势得到了体现。此外,运动轨迹提供了人体活动的可视化表示,这有助于研究人员更好地解释和分析运动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6568/7765316/e3b3cf55028b/sensors-20-07179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验