Suppr超能文献

使用神经网络进行人体姿态识别的骨架数据预处理。

Skeleton data pre-processing for human pose recognition using Neural Network.

作者信息

Guerra Bruna M V, Ramat Stefano, Gandolfi Roberto, Beltrami Giorgio, Schmid Micaela

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4265-4268. doi: 10.1109/EMBC44109.2020.9175588.

Abstract

Automatic monitoring of daily living activities can greatly improve the possibility of living autonomously for frail individuals. Pose recognition based on skeleton tracking data is promising for identifying dangerous situations and trigger external intervention or other alarms, while avoiding privacy issues and the need for patient compliance. Here we present the benefits of pre-processing Kinect-recorded skeleton data to limit the several errors produced by the system when the subject is not in ideal tracking conditions. The accuracy of our two hidden layers MLP classifier improved from about 82% to over 92% in recognizing actors in four different poses: standing, sitting, lying and dangerous sitting.

摘要

对日常生活活动进行自动监测可以极大地提高体弱个体自主生活的可能性。基于骨骼跟踪数据的姿势识别在识别危险情况并触发外部干预或其他警报方面很有前景,同时避免了隐私问题以及患者配合的需求。在此,我们展示了预处理Kinect记录的骨骼数据的好处,以减少系统在受试者不在理想跟踪条件下产生的一些误差。在识别站立、坐着、躺着和危险坐姿这四种不同姿势的动作时,我们的两层隐藏层MLP分类器的准确率从约82%提高到了92%以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验