Laboratory of Bioengineering, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy.
Sensors (Basel). 2023 Jun 1;23(11):5260. doi: 10.3390/s23115260.
Ambient Assisted Living (AAL) systems are designed to provide unobtrusive and user-friendly support in daily life and can be used for monitoring frail people based on various types of sensors, including wearables and cameras. Although cameras can be perceived as intrusive in terms of privacy, low-cost RGB-D devices (i.e., Kinect V2) that extract skeletal data can partially overcome these limits. In addition, deep learning-based algorithms, such as Recurrent Neural Networks (RNNs), can be trained on skeletal tracking data to automatically identify different human postures in the AAL domain. In this study, we investigate the performance of two RNN models (2BLSTM and 3BGRU) in identifying daily living postures and potentially dangerous situations in a home monitoring system, based on 3D skeletal data acquired with Kinect V2. We tested the RNN models with two different feature sets: one consisting of eight human-crafted kinematic features selected by a genetic algorithm, and another consisting of 52 ego-centric 3D coordinates of each considered skeleton joint, plus the subject's distance from the Kinect V2. To improve the generalization ability of the 3BGRU model, we also applied a data augmentation method to balance the training dataset. With this last solution we reached an accuracy of 88%, the best we achieved so far.
环境辅助生活 (AAL) 系统旨在提供日常生活中的无干扰和用户友好的支持,并且可以基于各种类型的传感器(包括可穿戴设备和摄像头)来监测脆弱人群。尽管摄像头在隐私方面可能被认为具有侵入性,但可以提取骨骼数据的低成本 RGB-D 设备(例如 Kinect V2)可以部分克服这些限制。此外,基于深度学习的算法,例如递归神经网络 (RNN),可以在骨骼跟踪数据上进行训练,以自动识别 AAL 领域中的不同人体姿势。在这项研究中,我们研究了两种 RNN 模型(2BLSTM 和 3BGRU)在基于 Kinect V2 采集的 3D 骨骼数据的家庭监控系统中识别日常生活姿势和潜在危险情况的性能。我们使用两种不同的特征集测试了 RNN 模型:一种由通过遗传算法选择的八个人为运动学特征组成,另一种由每个考虑的骨骼关节的 52 个以自我为中心的 3D 坐标以及主体与 Kinect V2 的距离组成。为了提高 3BGRU 模型的泛化能力,我们还应用了一种数据增强方法来平衡训练数据集。通过最后一个解决方案,我们达到了 88%的准确率,这是我们迄今为止取得的最好成绩。