Berkenbrock Jose-Alvim, Scherer Torsten, Mail Matthias, Achenbach Sven
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4278-4281. doi: 10.1109/EMBC44109.2020.9176090.
Resistive pulse sensors (RPS) are based on the detection principle of partial and non-permanent obstruction of an electrically conducting channel. The integration of RPS in microfluidics has the potential for detections at the molecular level. Current challenges involve limitations in fabrication technology, most notably the finite structure accuracy and fabrication repeatability, which have a direct and strong impact on RPS device performance. In this work, we analyzed the geometrical structure and performance of a nanofabricated RPS device and iteratively used the experimental data to propose an adequate numerical model which also accounts for fabrication imperfections beyond the optical resolution limit. The proposed model for a nano-RPS was validated and able to augment the understating of the structure and operation of a microdevice.Clinical Relevance- This work is part of a greater effort to bring microfluidics devices closer to patients for bedside analysis of blood, or other human fluids, for instance. These devices can potentially perform screening for multiple targets in one sample. New devices often need to go through design, prototyping and bench tests, simulation models as the one presented can increase the chances of the device to get to the market in reduced time.
电阻脉冲传感器(RPS)基于导电通道部分且非永久性阻塞的检测原理。将RPS集成到微流控技术中具有在分子水平进行检测的潜力。当前的挑战涉及制造技术的局限性,最显著的是有限的结构精度和制造重复性,这对RPS设备性能有直接且强烈的影响。在这项工作中,我们分析了一种纳米制造的RPS设备的几何结构和性能,并反复使用实验数据来提出一个合适的数值模型,该模型还考虑了超出光学分辨率极限的制造缺陷。所提出的纳米RPS模型经过了验证,能够加深对微设备结构和操作的理解。临床意义——这项工作是将微流控设备更靠近患者以进行床边血液或其他人体液体分析的更大努力的一部分。例如,这些设备有可能在一个样本中对多个目标进行筛查。新设备通常需要经过设计、原型制作和台架测试,像本文所展示的模拟模型可以增加设备在更短时间内进入市场的机会。