Hsu Po-Ya, Cheng Chung-Kuan
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4470-4474. doi: 10.1109/EMBC44109.2020.9175411.
We present an enhanced R-peak detection technique that incorporates both waveform shape recognition and threshold sensitivity enhancement. Waveform shape recognition was achieved with signal processing and Gaussian curve parameterization; threshold sensitivity was accomplished with the famous Pan-Tompkins algorithm. We tested all 48 records in MIT-BIH Arrhythmia Database to validate the proposed method. Our method achieved 97.41% sensitivity against a tolerance window of 10% averaged R-R interval, which improves the current state-of-the-art Pan-Tompkins algorithm by 1%. More importantly, we demonstrate that our approach outperforms the Pan-Tompkins' algorithm in 81% of the records in MIT-BIH Arrhythmia Database.Clinical relevance: High sensitivity R-peak detection is substantial in various cardiovascular disease diagnosis.
我们提出了一种增强的R波检测技术,该技术结合了波形形状识别和阈值灵敏度增强。波形形状识别通过信号处理和高斯曲线参数化实现;阈值灵敏度通过著名的Pan-Tompkins算法实现。我们测试了麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库中的所有48条记录,以验证所提出的方法。我们的方法在平均R-R间期10%的容差窗口下实现了97.41%的灵敏度,比当前最先进的Pan-Tompkins算法提高了1%。更重要的是,我们证明了我们的方法在麻省理工学院-贝斯以色列女执事医疗中心心律失常数据库中81%的记录中优于Pan-Tompkins算法。临床相关性:高灵敏度R波检测在各种心血管疾病诊断中至关重要。