Suppr超能文献

可穿戴设备上的节能实时心肌梗死检测

Energy-efficient Real-time Myocardial Infarction Detection on Wearable Devices.

作者信息

Rashid Nafiul, Al Faruque Mohammad Abdullah

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4648-4651. doi: 10.1109/EMBC44109.2020.9175232.

Abstract

Myocardial Infarction (MI) is a fatal heart disease that is a leading cause of death. The silent and recurrent nature of MI requires real-time monitoring on a daily basis through wearable devices. Real-time MI detection on wearable devices requires a fast and energy-efficient solution to enable long term monitoring. In this paper, we propose an MI detection methodology using Binary Convolutional Neural Network (BCNN) that is fast, energy-efficient and outperforms the state-of-the- art work on wearable devices. We validate the performance of our methodology on the well known PTB diagnostic ECG database from PhysioNet. Evaluation on real hardware shows that our BCNN is faster and achieves up to 12x energy efficiency compared to the state-of-the-art work.

摘要

心肌梗死(MI)是一种致命的心脏病,是主要的死亡原因。MI的隐匿性和复发性需要通过可穿戴设备进行日常实时监测。在可穿戴设备上进行实时MI检测需要一种快速且节能的解决方案,以实现长期监测。在本文中,我们提出了一种使用二元卷积神经网络(BCNN)的MI检测方法,该方法快速、节能,并且在可穿戴设备上的性能优于现有技术。我们在来自PhysioNet的著名PTB诊断心电图数据库上验证了我们方法的性能。在实际硬件上的评估表明,与现有技术相比,我们的BCNN更快,能效提高了12倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验