Suppr超能文献

一种用于可穿戴式心率异常检测的轻量级卷积神经网络硬件实现。

A lightweight convolutional neural network hardware implementation for wearable heart rate anomaly detection.

作者信息

Gu Minghong, Zhang Yuejun, Wen Yongzhong, Ai Guangpeng, Zhang Huihong, Wang Pengjun, Wang Guoqing

机构信息

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China.

Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China.

出版信息

Comput Biol Med. 2023 Mar;155:106623. doi: 10.1016/j.compbiomed.2023.106623. Epub 2023 Feb 8.

Abstract

In this article, we propose a lightweight and competitively accurate heart rhythm abnormality classification model based on classical convolutional neural networks in deep neural networks and hardware acceleration techniques to address the shortcomings of existing wearable devices for ECG detection. The proposed approach to build a high-performance ECG rhythm abnormality monitoring coprocessor achieves a high degree of data reuse in time and space, which reduces the number of data flows, provides a more efficient hardware implementation and reduces hardware resource consumption than most existing models. The designed hardware circuit relies on 16-bit floating-point numbers for data inference at the convolutional, pooling, and fully connected layers, and implements acceleration of the computational subsystem through a 21-group floating-point multiplicative-additive computational array and an adder tree. The front- and back-end design of the chip was completed on the TSMC 65 nm process. The device has an area of 0.191 mm, a core voltage of 1 V, an operating frequency of 20 MHz, a power consumption of 1.1419 mW, and requires 5.12 kByte of storage space. The architecture was evaluated using the MIT-BIH arrhythmia database dataset, which showed a classification accuracy of 97.69% and a classification time of 0.3 ms for a single heartbeat. The hardware architecture offers high accuracy with a simple structure, low resource footprint, and the ability to operate on edge devices with relatively low hardware configurations.

摘要

在本文中,我们基于深度神经网络中的经典卷积神经网络和硬件加速技术,提出了一种轻量级且具有竞争力的高精度心律异常分类模型,以解决现有可穿戴式心电图检测设备的缺点。所提出的构建高性能心电图心律异常监测协处理器的方法在时间和空间上实现了高度的数据重用,这减少了数据流的数量,提供了比大多数现有模型更高效的硬件实现,并减少了硬件资源消耗。所设计的硬件电路在卷积、池化和全连接层依赖16位浮点数进行数据推理,并通过一个21组的浮点乘加计算阵列和一个加法树来实现计算子系统的加速。芯片的前端和后端设计在台积电65纳米工艺上完成。该设备面积为0.191平方毫米,核心电压为1伏,工作频率为20兆赫兹,功耗为1.1419毫瓦,需要5.12千字节的存储空间。使用麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库数据集对该架构进行评估,结果显示单次心跳的分类准确率为97.69%,分类时间为0.3毫秒。该硬件架构具有简单的结构、低资源占用以及能够在硬件配置相对较低的边缘设备上运行的特点,同时还具备高精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验