Suppr超能文献

用于推圈激活动力辅助轮椅的基于学习的地形分类框架的开发。

Development of A Learning-Based Terrain Classification Framework for Pushrim-Activated Power-Assisted Wheelchairs.

作者信息

Khalili Mahsa, McConkey Keenan T, Ta Kevin, Wu Lyndia C, Van der Loos H F Machiel, Borisoff Jaimie F

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4762-4765. doi: 10.1109/EMBC44109.2020.9175678.

Abstract

Pushrim-activated power-assisted wheels (PAPAWs) are assistive technologies that provide on-demand torque assistance to wheelchair users. Although the available power can reduce the physical load of wheelchair propulsion, it may also cause maneuverability and controllability issues. Commercially-available PAPAW controllers are insensitive to environmental changes, leading to inefficient and/or unsafe wheelchair movements. In this regard, adaptive velocity/torque control strategies could be employed to improve safety and stability. To investigate this objective, we propose a context-aware sensory framework to recognize terrain conditions. In this paper, we present a learning-based terrain classification framework for PAPAWs. Study participants performed various maneuvers consisting of common daily-life wheelchair propulsion routines on different indoor and outdoor terrains. Relevant features from wheelchair frame-mounted gyroscope and accelerometer measurements were extracted and used to train and test the proposed classifiers. Our findings revealed that a one-stage multi-label classification framework has a higher accuracy performance compared to a two-stage classification pipeline with an indoor-outdoor classification in the first stage. We also found that, on average, outdoor terrains can be classified with higher accuracy (90%) compared to indoor terrains (65%). This framework can be used for real-time terrain classification applications and provide the required information for an adaptive velocity/torque controller design.

摘要

推rim激活的动力辅助轮(PAPAWs)是一种为轮椅使用者提供按需扭矩辅助的辅助技术。尽管可用动力可以减轻轮椅推进的体力负担,但它也可能导致机动性和可控性问题。市售的PAPAW控制器对环境变化不敏感,导致轮椅运动效率低下和/或不安全。在这方面,可以采用自适应速度/扭矩控制策略来提高安全性和稳定性。为了研究这一目标,我们提出了一种上下文感知传感框架来识别地形条件。在本文中,我们提出了一种基于学习的PAPAWs地形分类框架。研究参与者在不同的室内和室外地形上进行了各种由常见日常生活轮椅推进常规组成的操作。从安装在轮椅框架上的陀螺仪和加速度计测量中提取相关特征,并用于训练和测试所提出的分类器。我们的研究结果表明,与第一阶段进行室内-室外分类的两阶段分类管道相比,单阶段多标签分类框架具有更高的准确率性能。我们还发现,平均而言,与室内地形(65%)相比,室外地形的分类准确率更高(90%)。该框架可用于实时地形分类应用,并为自适应速度/扭矩控制器设计提供所需信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验