Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4542-4545. doi: 10.1109/EMBC46164.2021.9630749.
Pushrim-activated power-assisted wheelchairs (PAPAWs) are assistive technologies that provide propulsion assist to wheelchair users and enable access to various indoor and outdoor terrains. Therefore, it is beneficial to use PAPAW controllers that adapt to different terrain conditions. To achieve this objective, terrain classification techniques can be used as an integral part of the control architecture. Previously, the feasibility of using learning-based terrain classification models was investigated for offline applications. In this paper, we examine the effects of three model parameters (i.e., feature characteristics, terrain types, and the length of data segments) on offline and real-time classification accuracy. Our findings revealed that Random Forest classifiers are computationally efficient and can be used effectively for real-time terrain classification. These classifiers have the highest performance accuracy when used with a combination of time- and frequency-domain features. Additionally, we found that increasing the number of data points used for terrain estimation improves the prediction accuracy. Finally, our results revealed that classification accuracy can be improved by considering terrains with similar characteristics under one umbrella group. These findings can contribute to the development of real-time adaptive controllers that enhance PAPAW usability on different terrains.
推轮式助力轮椅(PAPAW)是一种辅助技术,可为轮椅使用者提供推进辅助,并使他们能够进入各种室内和室外地形。因此,使用适应不同地形条件的 PAPAW 控制器是有益的。为了实现这一目标,可以将地形分类技术用作控制架构的一个组成部分。以前,已经研究了基于学习的地形分类模型在离线应用中的可行性。在本文中,我们研究了三个模型参数(即特征特性、地形类型和数据段长度)对离线和实时分类准确性的影响。我们的研究结果表明,随机森林分类器在计算上是高效的,并且可以有效地用于实时地形分类。当与时间和频域特征相结合使用时,这些分类器具有最高的性能准确性。此外,我们发现,增加用于地形估计的数据点数可以提高预测准确性。最后,我们的结果表明,通过将具有相似特征的地形归入一个伞形组,可以提高分类准确性。这些发现可以为开发实时自适应控制器做出贡献,从而提高 PAPAW 在不同地形上的可用性。