Suppr超能文献

使用长短期记忆网络进行深度学习以对痴呆症相关出行模式进行分类

Deep learning with long short-term memory networks for classification of dementia related travel patterns.

作者信息

Vuong Nhu Khue, Liu Yong, Chan Syin, Lau Chiew Tong, Chen Zhenghua, Wu Min, Li Xiaoli

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5563-5566. doi: 10.1109/EMBC44109.2020.9175472.

Abstract

Wandering pattern classification is important for early recognition of cognitive deterioration and other health conditions in people with dementia (PWD). In this paper, we leverage the orientation data available on mobile devices to recognize dementia-related wandering patterns. In particular, we propose to use deep learning (DL) with long short-term memory networks (LSTM) as classifiers for detecting travel patterns including direct, pacing, lapping and random. Experimental results on a real dataset collected from 14 subjects show that deep LSTM classifiers perform better than traditional machine learning (ML) classifiers. Our proposed method can thus be potentially used in healthcare applications for dementia related wandering monitoring and management.Clinical Relevance- This demonstrates the potential of using readily available yet non-privacy information to detect dementia-related wandering patterns with high accuracy.

摘要

游荡模式分类对于早期识别痴呆症患者(PWD)的认知衰退和其他健康状况至关重要。在本文中,我们利用移动设备上可用的方向数据来识别与痴呆症相关的游荡模式。具体而言,我们建议使用带有长短期记忆网络(LSTM)的深度学习(DL)作为分类器,以检测包括直接、踱步、绕圈和随机在内的出行模式。对从14名受试者收集的真实数据集进行的实验结果表明,深度LSTM分类器的性能优于传统机器学习(ML)分类器。因此,我们提出的方法有可能用于医疗保健应用中的痴呆症相关游荡监测和管理。临床相关性——这证明了利用现成但不涉及隐私的信息来高精度检测与痴呆症相关的游荡模式的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验