Suppr超能文献

使用卷积神经网络分类器,通过心率变异性特征对儿科重症监护病房脓毒症进行早期诊断的潜在预后标志物

Potential Prognostic Markers in the Heart Rate Variability Features for Early Diagnosis of Sepsis in the Pediatric Intensive Care Unit using Convolutional Neural Network Classifiers.

作者信息

Amiri Paria, Abbasi Hamid, Derakhshan Amin, Gharib Behdad, Nooralishahi Behrang, Mirzaaghayan Mohamadreza

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5627-5630. doi: 10.1109/EMBC44109.2020.9175481.

Abstract

Blood infection due to different circumstances could immediately develop to an extreme body reaction that leads to a serious life-threatening condition, called Sepsis. Currently, therapeutic protocols through timely antibiotic resuscitation strategies play an important role to fight against the adverse conditions and improve survival. Therefore, timing, and more specifically early diagnosis of the illness, is crucially important for an effective treatment. Studies have indicated that vital signals such as heart rate variability (HRV) could provide potential prognostic biological markers that can help with early detection of sepsis before it is clinically diagnosed through its actual symptoms. Therefore, this study employs neonatal and pediatric electrocardiogram (ECG) to extract 52 hourly sets of linear and non-linear features from the HRV, starting from 24 hours prior to the clinical diagnosis of sepsis in patients with positive blood cultures (n=14). Similar sets of features were also obtained from a non-sepsis control group to create an evaluation benchmark (n=14).In particular, this study initially demonstrates how the variations within the 24 hours values of specific HRV featuresets could effectively reveal prognostic information about the evolution of sepsis, prior to the actual clinical diagnosis. Moreover, this study demonstrates that differences in the values of a particular set of features at 22 hours before the actual clinical diagnosis/symptoms can be reliably used to train a convolutional neural network for automatic classification between the individuals in the sepsis and non-sepsis groups with 88.89±7.86% accuracy.Clinical relevance- Results suggest potential early diagnosis of sepsis through real-time automatic classification of HRV features as prognostic indicators in clinical ECG recordings.

摘要

由于不同情况导致的血液感染可能会立即引发极端的身体反应,进而发展成一种严重的危及生命的状况,即脓毒症。目前,通过及时的抗生素复苏策略制定的治疗方案在对抗不良状况和提高生存率方面发挥着重要作用。因此,时机,更具体地说是疾病的早期诊断,对于有效治疗至关重要。研究表明,诸如心率变异性(HRV)等生命体征可以提供潜在的预后生物学标志物,有助于在脓毒症通过实际症状临床诊断之前进行早期检测。因此,本研究采用新生儿和儿科心电图(ECG)从HRV中提取52组每小时的线性和非线性特征,从血培养阳性(n = 14)的脓毒症患者临床诊断前24小时开始。还从非脓毒症对照组获得了类似的特征集,以创建一个评估基准(n = 14)。特别是,本研究最初展示了特定HRV特征集在24小时内的值变化如何能够在实际临床诊断之前有效地揭示有关脓毒症演变的预后信息。此外,本研究表明,在实际临床诊断/症状出现前22小时,特定一组特征值的差异可以可靠地用于训练卷积神经网络,以对脓毒症组和非脓毒症组个体进行自动分类,准确率为88.89±7.86%。临床相关性——结果表明,通过将HRV特征作为临床心电图记录中的预后指标进行实时自动分类,有可能早期诊断脓毒症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验