Vatanparvar Korosh, Nemati Ebrahim, Nathan Viswam, Rahman Md Mahbubur, Kuang Jilong
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5689-5695. doi: 10.1109/EMBC44109.2020.9176835.
Automatic cough detection using audio has advanced passive health monitoring on devices such as smart phones and wearables; it enables capturing longitudinal health data by eliminating user interaction and effort. One major issue arises when coughs from surrounding people are also detected; capturing false coughs leads to significant false alarms, excessive cough frequency, and thereby misdiagnosis of user condition. To address this limitation, in this paper, a method is proposed that creates a personal cough model of the primary subject using limited number of cough samples; the model is used by the automatic cough detection to verify whether the identified coughs match the personal pattern and belong to the primary subject. A Gaussian mixture model is trained using audio features from cough to implement the subject verification method; novel cough embeddings are learned using neural networks and integrated into the model to further improve the prediction accuracy. We analyze the performance of the method using our cough dataset collected by a smart phone in a clinical study. Population in the dataset involves subjects categorized of healthy or patients with COPD or Asthma, with the purpose of covering a wider range of pulmonary conditions. Cross-subject validation on a diverse dataset shows that the method achieves an average error rate of less than 10%, using a personal cough model generated by only 5 coughs from the primary subject.
利用音频进行自动咳嗽检测推动了智能手机和可穿戴设备等设备上的被动健康监测发展;它通过消除用户交互和努力,实现了纵向健康数据的采集。当检测到周围其他人的咳嗽时,就会出现一个主要问题;捕捉到虚假咳嗽会导致大量误报、过高的咳嗽频率,进而导致对用户病情的误诊。为了解决这一局限性,本文提出了一种方法,该方法使用有限数量的咳嗽样本创建主要受试者的个人咳嗽模型;自动咳嗽检测使用该模型来验证识别出的咳嗽是否与个人模式匹配且属于主要受试者。使用来自咳嗽的音频特征训练高斯混合模型来实现受试者验证方法;使用神经网络学习新颖的咳嗽嵌入并将其集成到模型中,以进一步提高预测准确性。我们使用在一项临床研究中通过智能手机收集的咳嗽数据集来分析该方法的性能。数据集中的人群包括健康受试者以及慢性阻塞性肺疾病(COPD)或哮喘患者,目的是涵盖更广泛的肺部疾病情况。在一个多样化数据集上的跨受试者验证表明,该方法使用仅由主要受试者的5次咳嗽生成的个人咳嗽模型,平均错误率低于10%。