Suppr超能文献

光电容积脉搏波描记法压缩的随机建模

Stochastic Modeling for Photoplethysmography Compression.

作者信息

Xu Ke, Jiang Xinyu, Dai Chenyun, Chen Wei

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5925-5928. doi: 10.1109/EMBC44109.2020.9175399.

Abstract

Photoplethysmography (PPG) has been widely involved in health monitoring for clinical medicine and wearable devices. To make full use of PPG signals for diagnosis and health care, raw PPG waveforms have to be stored and transmitted in a storage and power-efficient way, which is data compression. In this study, we proposed a new approach for PPG compression using stochastic modeling. This new method models a single cardiac period of PPG waveform using two sets of Gaussian functions to fit the forward and backward waves of the PPG pulse, representing the signal with a few numbers of parameters that share high similarity inter cardiac periods. An adaptive quantization based on higher-order statistics of inter-cardiac- period parameters was then adopted to quantize continuous parameters into transmissive-friendly integers of different bits. Although further ASCII encoding was not applied in this research, comparison results on a wearable PPG dataset with 30 subjects show that the proposed approach can achieve a much higher compression ratio (up to 41 under 200 Samples/s for 18-bit data) than conventional delta modulation-based methods under clinical-acceptable recover quality, with percentage root-mean-square difference (PRD) lower than 9%. This algorithm may also have comparative results with state-of-the-art methods after introducing lossless encoding, which is hardly absent from the latter. This study indicates the high potential of using stochastic modeling in PPG compression, especially for reflective PPG collected by wearable devices where the amplitudes of signals can be significantly affected by respiration.Clinical Relevance-This research establishes a new approach of photoplethysmography compression, which contributes to remote and telehealth monitoring in wearable devices.

摘要

光电容积脉搏波描记法(PPG)已广泛应用于临床医学和可穿戴设备的健康监测。为了充分利用PPG信号进行诊断和医疗保健,原始PPG波形必须以存储和节能的方式进行存储和传输,即数据压缩。在本研究中,我们提出了一种使用随机建模的PPG压缩新方法。这种新方法使用两组高斯函数对PPG波形的单个心动周期进行建模,以拟合PPG脉冲的正向和反向波,用少数几个在心动周期之间具有高度相似性的参数来表示信号。然后采用基于心动周期间参数高阶统计量的自适应量化方法,将连续参数量化为不同位数的便于传输的整数。尽管本研究未应用进一步的ASCII编码,但对30名受试者的可穿戴PPG数据集的比较结果表明,在临床可接受的恢复质量下,所提出的方法比传统的基于增量调制的方法能实现更高的压缩率(对于18位数据,在200样本/秒下高达41),均方根误差百分比(PRD)低于9%。在引入无损编码后,该算法可能也会与最先进的方法取得可比结果,而无损编码是后者不可或缺的。本研究表明随机建模在PPG压缩中具有很高的潜力,特别是对于可穿戴设备收集的反射式PPG,其信号幅度会受到呼吸的显著影响。临床相关性——本研究建立了一种新的光电容积脉搏波描记法压缩方法,有助于可穿戴设备中的远程和远程医疗监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验