OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
Int J Mol Sci. 2020 Oct 1;21(19):7277. doi: 10.3390/ijms21197277.
The intermediate filament synemin has been previously identified as novel regulator of cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase is involved in both of these processes. Using PamGene technology, we performed a broad-spectrum kinase activity profiling in three-dimensionally, extracellular matrix grown head and neck cancer cell cultures. Upon synemin silencing, we identified 86 deactivated tyrosine kinases, including c-Abl, in irradiated HNSCC cells. Upon irradiation and synemin inhibition, c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 was significantly reduced, prompting us to hypothesize that c-Abl tyrosine kinase is an important signaling component of the synemin-mediated radioresistance pathway. Simultaneous targeting of synemin and c-Abl resulted in similar radiosensitization and DSB repair compared with single synemin depletion, suggesting synemin as an upstream regulator of c-Abl. Immunoprecipitation assays revealed a protein complex formation between synemin and c-Abl pre- and post-irradiation. Upon pharmacological inhibition of ATM, synemin/c-Abl protein-protein interactions were disrupted implying synemin function to depend on ATM kinase activity. Moreover, deletion of the SH2 domain of c-Abl demonstrated a decrease in interaction, indicating the dependency of the protein-protein interaction on this domain. Mechanistically, radiosensitization upon synemin knockdown seems to be associated with an impairment of DNA repair via regulation of non-homologous end joining independent of c-Abl function. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further key determinant of radioresistance downstream of synemin.
中间丝蛋白 synemin 先前被鉴定为一种新型的肿瘤细胞治疗耐药和 DNA 双链断裂 (DSB) 修复的调节剂。c-Abl 酪氨酸激酶参与了这两个过程。我们使用 PamGene 技术,在三维细胞外基质培养的头颈部癌细胞中进行了广泛的激酶活性谱分析。在沉默 synemin 后,我们在照射的 HNSCC 细胞中鉴定出 86 种失活的酪氨酸激酶,包括 c-Abl。在照射和 synemin 抑制后,c-Abl 在酪氨酸 (Y) 412 和苏氨酸 (T) 735 上的过度磷酸化显著减少,这促使我们假设 c-Abl 酪氨酸激酶是 synemin 介导的放射抵抗途径中的一个重要信号成分。同时靶向 synemin 和 c-Abl 导致的放射增敏和 DSB 修复与单独抑制 synemin 相似,这表明 synemin 是 c-Abl 的上游调节剂。免疫沉淀实验揭示了 synemin 和 c-Abl 在照射前后形成蛋白质复合物。在 ATM 的药理学抑制后,synemin/c-Abl 蛋白-蛋白相互作用被破坏,表明 synemin 功能依赖于 ATM 激酶活性。此外,c-Abl 的 SH2 结构域缺失导致相互作用减少,表明蛋白质-蛋白质相互作用依赖于该结构域。从机制上讲,synemin 敲低后引起的放射增敏似乎与非同源末端连接的 DNA 修复受损有关,而不依赖于 c-Abl 的功能。我们在更具生理意义的 3D 癌细胞培养模型中生成的数据表明,c-Abl 是 synemin 下游的另一个关键放射抵抗决定因素。